
PLANAR KINEMATICS OF A RIGID BODY

I. Rigid body motion:

When all the particles of a rigid body move along paths which are equidistant from a fixed plane, the
body is said to undergo planar motion. There are three types of rigid body planar motion

1. Translation: Every line segment in the body remains parallel to its original direction during the
motion. Specifically, a body can undergo two types of translation:

(a) Rectilinear translation: All points follow parallel straight-line paths

(b) Curvilinear translation: All points follow curved paths that are of the same shape and are
equidistant from one another.

2. Rotation about a fixed axis: All the particles of the body, except those which lie on the axis of
rotation move along circular paths

3. General plane motion: The body undergoes a combination of translation and rotation
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All the above types of rigid body planar motion are exemplified by the moving parts of the crank
mechanism shown in the figure below

II. Translation:

Consider a rigid body which is subjected to either rectilinear or curvilinear translation in the x-y plane.
x’-y’ is a frame associated with the translating object.

A and B are two points in the rigid body. Because our object is a rigid body, all its points are at fixed
distances from each other, moreover, for planar rigid body translation the direction ~rA/B is constant then(
d~rB/A/dt = 0 and d2~rB/A/dt2 = 0

)
. We have the following relations:

~rB = ~rA + ~rB/A

~VB = ~VA

~aB = ~aA

In other words, all the points on a translating rigid body move with the same velocity and acceleration.
As a result, the kinematics of particle motion discussed in chapter 2, may also be used to specify the
kinematics of points located in a translating rigid body.

II. Rotation about a fixed axis:

When a body is rotating about a fixed axis, any point P located in the body travels along a circular
path. The motion of the body is described by its angular motion which involves three basic quantities:
angular position (θ), angular velocity (ω), and angular acceleration (α) described as follow:
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• Angular velocity: Measures the time rate of change of the angular position. If θ is the angular
position of a radial line located in some representative plane of the body, the angular velocity ω is
along the axis of rotation and its direction can be determined using the right hand rule; that is, the
fingers of the right hand are curled with the sense of rotation, the thumb indicate the direction of
the angular velocity.

ω =
dθ

dt

This vector has a magnitude which is often measured in rad/s. It is expressed here in scalar form
since its direction is always along the axis of rotation. When indicating the angular motion, we can
refer to the sense of rotation as clockwise or counterclockwise. counterclockwise rotations are usually
chosen as positive

• Angular acceleration: Measures the time rate of change of the angular velocity. The angular
acceleration α is along the axis of rotation, and its sense of direction depends on whether ω is
increasing or decreasing. (if | ω | is decreasing α and ω have opposite direction and vise-versa

α =
dω

dt

• useful relation between α, ω, and θ By eliminating t from α = dw/dt and w = dθ/dt we obtain

α dθ = ω dω
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The similarity between the differential relations for angular motion and those developed for rectilinear
motion of a particle (v = ds/dt , a = dv/dt , and a ds = v dv) should be apparent.

• Constant angular acceleration: If the angular acceleration of the body is constant α = αc then

ω = ωo + αc t

θ = θo + ωo t +
1
2

α t2

ω2 = ω2
o + 2 αc (θ − θo)

where θo and ωo are the initial values of the body’s angular position and angular velocity, respectively,
and we have chosen counterclockwise rotation as positive.

• Motion of point P: As the rigid body rotates, point P travels along a circular path of radius r and
center at O. This path is contained within the shaded plane shown in the figure below.

– Position: The position of P is defined by the position vector ~r which extends from O to P

– Velocity: can be found from its polar coordinate components vr = ṙ, and vθ = r θ̇ = r ω.
Since r is constant ṙ = 0 and

~v = r ω ûθ = ~ω × ~rp

where ~rp, is directed from any point on the axis of rotation to point P. As a special case, the
position vector ~r can be chosen for ~rp. Here ~r lies in the plane of motion and again the velocity
of point P is

~v = ~ω × ~r

– acceleration: The acceleration has two components. The tangential component of acceleration
measures the rate of change of the magnitude of the velocity and can be determined using
at = dv/dt = r α. The normal component of acceleration measures the rate of change in
direction of the velocity and can be determined from an = v2/r = r ω2. In terms of vectors

~a =
d~v

dt
=

d~ω

dt
× ~rp + ~w × d~rp

dt
= ~α × ~rp + ~ω × (~ω × ~rp)
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From the definition of the cross product, the first term ~α×~rp has a a magnitude at = α rp sin(φ)
and by the right hand rule, ~α × ~rp is in the direction of ~at. Likewise, the second term has a
magnitude of an = ω2 rp sin(φ), and applying the right hand rule twice, first to determine the
result ~vp = ~ω × ~rp then ~ω × ~vp, it can be seen that this result is in the same direction as ~an.
Noting that this is also the same direction as −~r, which lies in the plane of motion, we can
express ~an in a much simpler form as ~an = −ω2 ~r. Hence

~a = ~at + ~an = ~α × ~r − ω2 ~r

• Procedure for solving problems: The velocity and acceleration of a point located on a rigid body
that is rotating about a fixed axis can be determined using the following procedure

– Angular motion

∗ Establish the positive sense of rotation along the axis of rotation
∗ If a relationship is known between any two of the four variables α, ω, θ, t, then a third

variable can be obtained by using one of the following kinematic equations which relates all
three variables

ω =
dθ

dt
, α =

dω

dt
, α dθ = ω dω

∗ If the body’s angular acceleration is constant then the following equations can be used
ω = ωo + αc t

θ = θo + ωo t +
1
2

α t2

ω2 = ω2
o + 2 αc (θ − θo)

∗ Once the solution is obtained, the sense of α, ω, and θ is determined from the algebraic
sings of their numerical quantities

– Motion of P

∗ In most cases, the velocity of P and its two components of acceleration can be determined
from the scalar equations

v = r ω, at = r α, an = r ω2

∗ If the geometry of the problem is difficult to visualize, the following vector equations should
be used

~v = ~ω × ~r

~a = ~at + ~an = ~α × ~r − ω2 ~r
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III. Relative-Motion analysis: Velocity:

A general plane motion of a rigid body can be described as a combination of translation and rotation.
To view these ”component” motions separately we will use a relative-motion analysis involving two sets
of coordinate axes. The x, y coordinate system is fixed and measures the absolute position of two points
A and B on the body. The origin of the x’, y’ coordinate system will be attached to the selected ”base
point”, A, which generally has a known motion. The axes of this coordinate system translate with respect
to the fixed frame but do not rotate with the body.

~rB = ~rA + ~rB/A

During time dt, points A and B undergo displacements d~rA and d~rB such that

d~rB = d~rA + d~rB/A

If we consider the general plane motion by its components parts then the entire body first translates
by an amount d~rA so that the base point moves to its final position and point B moves to B’. The body is
then rotated about A by an amount dθ so that B’ undergoes a relative displacement d~rB/A and thus moves
to its final position B (this is true because the body is rigid and the distance | ~rB/A | is fixed). Due to the
rotation about A | d~rB/A |= rB/A dθ.

d~rB

dt
=

d~rA

dt
+

d~rB/A

dt
or ~vB = ~vA + ~vB/A

The magnitude of ~vB/A is rB/A dθ/dt and its direction is along the z’ axis.

Each of the three terms in the above equation is represented graphically on the kinematic diagram in
the figure below. Here it is seen that the velocity of B is determined by considering the entire body to
translate with a velocity ~vA and rotate about A with an angular velocity ~ω. Vector addition of these two
effects is also shown. Since the relative velocity ~vB/A represents the effect of circular motion about A, this
term can be expressed by the cross product ~vB/A = ~ω × ~rB/A. Hence

~vB = ~vA + ~ω × ~rB/A
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The velocity equation may be used in practical manner to study the general plane motion of a rigid body
which is either pin connected to or in contact with other moving bodies. When applying this equation,
points A and B should generally be selected as points on the body which are pin-connected to other bodies,
or as points in contact with other adjacent bodies which have a known motion. For example both points
A and B on the link AB have circular paths of motion since the wheel and link CB move in circular paths.
The directions of ~vA and ~vB can therefore be established since they are always tangent to their paths of
motion. In the case of the wheel, which rolls without slipping, point A can be selected at the ground. Here
A (momentarily) has zero velocity since the ground does not move. Furthermore, the center of the wheel,
B, moves along a horizontal path, so that ~vB is horizontal.

IV. Instantaneous center of zero velocity:

When using the equation ~vB = ~vA + ~ω × ~rB/A, the velocity of any point B located on a rigid body can
be obtained in a very direct way if one chooses the base point A to be a point that has a zero velocity at
the instant considered. This point is called the instantaneous center of zero velocity (IC), and it lies on
the instantaneous axis of zero velocity which is always perpendicular to the plane of motion. Consequently
since, if A is chosen as the IC, ~vA = ~vIC = 0 and

~vB = ~ω × ~rB/IC

Hence, point B moves momentarily about the IC in a circular path i.e., the body appears to rotate
about the instantaneous axis. For example, for a wheel which rolls without slipping, the point of contact
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with the ground is an IC. If it is imagined that the wheel is momentarily pinned at this point, the velocities
of points, B, C, O, and so on can be found using v = w r. Here the radial distances rB/IC , rC/IC , rO/IC ,
shown in the figure below, must be determined from the geometry of the wheel.

IV-1. Location of the IC:

To locate the IC we can use the fact that the velocity of a point on the body is always perpendicular
to the relative-position vector extending from the IC to the point. Several possibilities exist:

1. Given the velocity of a point A on the body, and the angular velocity ~ω of the body. In
this case, The IC is located along the perpendicular to ~vA at A, such that the distance from A to
the IC is rA/IC = vA/ω. Note that the IC in the figure below lies up and to the right of A, since vA

must cause a clockwise angular velocity ~ω about the IC

2. Given the lines of action of two non-parallel velocities ~vA and ~vB . Construct at point A and
B line segments that are perpendicular to ~vA and ~vB . Extending these perpendiculars to their point
of intersection as shown in the figure below, locates the IC at the instant considered
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3. Given the magnitude and direction of two parallel velocities ~vA and ~vB . Here the location
of the IC is determined by proportional triangles. Examples are shown in the figure below. In both
cases rA/IC = vA/w and rB/IC = vB/w. If d is a known distance between points A and B then in
the example to the left d = rA/IC + rB/IC and in the example to the right d = rB/IC − rA/IC

4. Important notes

• The point chosen as the IC for the body can be used only for an instant of time since the body
changes its position from one instant to the next

• The IC does not, in general, have zero acceleration and so should not be used for finding the
acceleration of points in a body.

V. Relative motion analysis: Acceleration

An equation that relates the accelerations of two points on a rigid body subjected to general plane
motion may be determined by differentiating the velocity equation ~vB = ~vA + ~vB/A with respect to time.
This yields

d~vB

dt
=

d~vA

dt
+

d~vB/A

dt

~aB = ~aA +
d~vB/A

dt

The last term represents the acceleration of B with respect to A as measured by an observer fixed to
the translating x’, y’ axes which have their origin at the base point A. Since point B appears to moves
along a circular arc that has a radius of curvature rB/A, ~aB/A can be expressed in terms of its tangential
and normal components
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~aB/A = (~aB/A)t + (~aB/A)n

~aB = ~aA + (~aB/A)t + (~aB/A)n

Each of the four terms in the equation above is represented graphically on the kinematic diagram
shown in the figure below. here it is seen that at a given instant the acceleration of B is determined by
considering the body to translate with an acceleration ~aA, and simultaneously rotate about the base point
A with instantaneous angular velocity ω and angular acceleration α.

Since the relative acceleration components represent the effect of circular motion observed from trans-
lating axes having their origin at the base point A, these terms can be expressed as (~aB/A)t = ~α × ~rB/A

and (~aB/A)n = −ω2 ~rB/A

~aB = ~aA + ~α × ~rB/A − ω2 ~rB/A

The above equation is applied in practical manner to study the accelerated motion of a rigid body
which is pin connected to two other bodies, it should be realized that points which are coincident at the
pin move with the same acceleration, since the path of motion over which they travel is the same. For
example point B lying on either rod AB or BC of the crank mechanism shown in the figure below has the
same acceleration, since the rods are pin connected at B. Here the motion of B is along a curved path, so
that ~aB can be expressed in terms of its tangential and normal components. At the other end of rod BC
point C moves along a straight line path which is defined by the piston. Hence ~aC is horizontal.
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If two bodies contact one another without slipping, and the points in contact move along different paths,
the tangential components of acceleration of the points will be the same; however the normal components
will not be the same. For example, consider the two meshed gears in the figure below. Point A is located
on gear B and a coincident point A’ is located on gear C. Due to the rotational motion, (aA)t = (a′

A)t;
however, since both points follow different curved paths (aA)n 6= (aA′)n and therefore ~aA 6= ~aA′ .

VI. Relative motion analysis using rotating axes

In the previous section the relative-motion analysis for velocities and acceleration was described using
a translating coordinate system. This type of analysis is useful for determining the motion of points on the
same rigid body, or the motion of points located on several pin-connected rigid bodies. In some problems
however, rigid bodies (mechanisms) are constructed such that sliding will occur at their connections. The
kinematic analysis for such cases is best performed if the motion is analyzed using a coordinate system
which both translates and rotates. Furthermore, this frame of reference is useful for analyzing the motions
of two points on a mechanism which are not located in the same rigid body and for specifying the kinematics
of particle motion when the particle is moving along a rotating path.

In the following analysis two equations are developed which relate the velocity and acceleration of two
points, one of which is the origin of a moving frame of reference subjected to both a translation and rotation
in the plane. Due to the generality in the derivation which follows, these two points may represent either
two particles moving independently of one another or two points located on the same (or different) rigid
bodies.

Consider an x, y, z coordinate system (with origin at point A) which is assumed to be translating and
rotating with respect to a fixed X, Y, Z coordinate system. We have the following equations which describe
the position, velocity and acceleration of a point B. If Ω and Ω̇ are respectively the angular velocity and
angular acceleration of the x, y axes. î, ĵ and k̂ are the unit vectors along the x, y, z axes respectively, and
Î, Ĵ and K̂ are the unit vectors along the X, Y, Z axes respectively.
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• Position:

~rB = ~rA + ~rB/A

• Velocity:

d~rB

dt
=

d~rA

dt
+

d~rB/A

dt
or ~vB = ~vA +

d~rB/A

dt

If xB and yB are the coordinates of point B along the x, y axes then

~rB/A = xB î + yB ĵ and
d~rB/A

dt
=

d

dt
(xB î + yB ĵ)

d~rB/A

dt
=
(

dxB

dt
î +

dyB

dt
ĵ

)
+

(
xB

dî

dt
+ yB

dĵ

dt

)

One can show that

dî

dt
= Ω ĵ = ~Ω× î and

dĵ

dt
= −Ω î = ~Ω× ĵ

(~vB/A)
xyz

=
(

dxB

dt
î +

dyB

dt
ĵ

)
, is the velocity of B with respect to A as measured by an observer

attached to the rotating x, y, z reference.

Substituting these results in the previous equation leads to

12



d~rB/A

dt
= (~vB/A)

xyz
+ Ω× (xB î + yB ĵ) = (~vB/A)

xyz
+ Ω× ~rB/A

~vB = ~vA + (~vB/A)
xyz

+ Ω× ~rB/A

• Acceleration:

In a similar manner the acceleration ~aA and vecaB of points A and B respectively with reference to
the fixed frame X, Y, Z are related by

~aB = ~aA + ~̇Ω× ~rB/A + ~Ω× (~Ω× ~rB/A) + 2~Ω× (~vB/A)
xyz

+ (~aB/A)
xyz

where (~aB/A)
xyz

=

(
d(vB/A)

x

dt
î +

d(vB/A)
y

dt
ĵ

)
If this equation is compared to equation found using relative accelerations which valid for translating
frame of reference, it can be seen that the difference between the equations is represented by the terms
2Ω×(~vB/A)

xyz
and (~aB/A)

xyz
. In particular 2Ω×(~vB/A)

xyz
is called the Coriolis acceleration, named

after the French engineer G.C. Coriolis who was the first to determine it. This term represents the
difference in acceleration of B as measured from nonrotating and rotating x, y, z axes. The coriolis
acceleration is always perpendicular to both ~Ω and (~vB/A)

xyz
. It is an important components of the

acceleration which must be considered whenever rotating reference frames are used.
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