
SOLVING NON LINEAR EQUATIONS

1 Introduction

In this section we consider methods for solving nonlinear equations. Given a nonlinear function f(x), we
seek a value of x for which

f(x) = 0

Such a solution value for x is called a root of the equation, and a zero
¯

of the function f(x). An example
of a nonlinear equation with one variable is

f(x) = x2 − 4 sin(x) = 0

As can be seen from fig.1, the function has roots at 0.0 and near 1.9. Graphical examination of a
function is often a good way to find the neighborhood of roots.

Fig.1

• Graphical techniques are of limited practical value because they are not precise. However, graphical
methods can be utilized to obtain rough estimates of roots. These estimates can be employed as
starting guesses for numerical methods discussed in this chapter.

2 Solving an equation of one variable f(x) = 0

The methods used for solving this type of equation numerically can be divided into two major groups.
bracketing methods, and open methods. In bracketing methods such as the bisection method and
the regula falsi method, an interval that includes the solution is identified. By definition, the end points
of the interval are the upper and lower bound of the solution. Then, by using a numerical scheme, the size
of the interval is successively reduced until the distance between the end points is less than the desired
accuracy of the solution. In the open method, such as Newton’s method, secant method or fixed
point iteration method, an initial estimate for the solution is assumed. The value of this initial guess
should be close to the actual solution. Then, by using a numerical scheme, better (more accurate) values
for the solution are calculated. Bracketing methods always converge to the solution. Open methods are
usually more efficient but sometimes might not yield the solution.
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3 Bracketing Methods

3.1 Bisection method

In general, if f(x) is real and continuous in the interval from a to b and f(a) and f(b) have opposite signs,
that is, f(a) · f(b) < 0, then there is at least one real root between a and b. The bisection method, which
is alternatively called binary chopping, interval halving, or Bolzanos method, is one type of incremental
search method in which the interval is always divided in half. If a function changes sign over an interval,
the function value at the midpoint is evaluated. The location of the root is then determined as lying at the
midpoint of the subinterval within which the sign change occurs. The process is repeated to obtain refined
estimates.

3.1.1 Algorithm for the bisection method

A graphical depiction of the method is provided in Fig.2.

1. Choose the first interval by finding points a and b such that a solution exists between them. This
means that f(a) and f(b) have different signs such that f(a) · f(b) < 0. The points can be determined
by examining the plot of versus x.

2. Calculate the first estimate of the numerical solution xNS1 by:

xNS1 =
a + b

2

3. Determine whether the true solution is between a and xNS1, or between xNS1 and b. This is done
by checking the sign of the product f(a) · f(xNS1):

• If f(a) · f(xNS1) < 0 , the true solution is between a and xNS1 .
• If f(a) · f(xNS1) > 0 , the true solution is between xNS1 and b.

4. Select the subinterval that contains the true solution ( a to xNS1, or xNS1 to b) as the new interval
[a, b] , and go back to step 2.

5. Steps 2 through 4 are repeated until a specified tolerance or error bound is attained.

Fig.2
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3.1.2 Termination Criteria

Ideally, the bisection process should be stopped when the true solution is obtained. This means that the
value of xNS is such that f(xNS) = 0. In reality, this true solution generally cannot be found computa-
tionally. Two possible options depending on the problem to be solved are

• If it is known that the solution is within the domain [a, b], then the numerical solution can be taken
as (a+ b)/2, and the tolerance (εa) to be half the distance between a and b. In practice, the iteration
is ended if the true solution is found or the tolerance of the iteration is smaller than the desired
tolerance.

root =
a + b

2
± εa

εa =
∣∣∣∣b− a

2

∣∣∣∣
εa ≤ εs

• An alternative to this is to terminate the method when the estimated relative as defined next is less
than than a predefined value.

– when two numerical estimates for the solution are known. This is the case when numerical
solutions are calculated iteratively, where in each new iteration a more accurate solution is
calculated. If x

(n)
NS is the estimated numerical solution in the last iteration and x

(n−1)
NS is the

estimated numerical solution in the preceding iteration, then an Estimated Relative Error can
be defined by:

estimated relative error =

∣∣∣∣∣ | x(n)
NS− | x(n−1)

NS

| x(n)
NS

∣∣∣∣∣
When the estimated numerical solutions are close to the true solution, it is anticipated that the
difference | x

(n)
NS − x

(n−1)
NS | is small compared to the value of x

(n)
NS , and the Estimated Relative

Error is approximately the same as the True Relative Error.

3.1.3 Additional notes

• The method always converges to an answer, provided a root was trapped in the interval to begin
with.

• The method may fail when the function is tangent to the axis and does not cross the x-axis at f(x)=0.

• The method converges slowly relative to other methods.

3.2 Regula Falsi method

The convergence process in the bisection method is very slow. It depends only on the choice of end points
of the interval [a, b]. The function f(x) does not have any role in finding the next approximation (which
is just the mid-point of a and c), it is used only to decide the next smaller interval [a, c] or [c, b]. For
example, if f(a) is much closer to zero than f(b), it is likely that the root is closer to a than to b. A better
approximation to next estimate can be obtained by taking the straight line joining the points (a,f(a)) and
(b,f(b)) intersecting the x-axis. To obtain the value of next approximation XNS

XNS =
af(b)− bf(a)
f(b)− f(a)
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The new interval to consider is either [a,XNS ] or [XNS , c] depending on whether f(a) · f(XNS) < 0 or
f(b) · f(XNS) < 0. the process is then repeated until the numerical solution is deemed accurate enough.

Fig.3

3.2.1 Algorithm for the Regula Falsi method

Identical to the one for the bisection except that

XNS =
af(b)− bf(a)
f(b)− f(a)

3.2.2 Termination Criteria

Same stopping criterion as in the bisection method

3.2.3 Additional notes

• The method always converges to an answer, provided a root was trapped in the interval [a, b].

• Frequently, as in the case shown in Fig.3, the function in the interval is either concave up or concave
down. In this case, one of the endpoints of the interval stays the same in all the iterations, while the
other endpoint advances toward the root. In other words, the numerical solution advances toward the
root only from one side. The convergence toward the solution could be faster if the other endpoint
would also move toward the root. Several modifications have been introduced to the regula falsi
method that make the subinterval in successive iterations approach the root from both sides.

4 Open Methods

4.1 Newton’s Method

Perhaps the most widely used of all root-locating formulas is the Newton-Raphson method (fig.4). If the
initial guess at the root is xi, a tangent can be extended from the point [xi, f(xi)]. The point where this
tangent crosses the x axis usually represents an improved estimate of the root. The Newton-Raphson
method can be derived on the basis of this geometrical interpretation (an alternative method based on the
Taylor series is presented later in this paragraph).

The numerical approximation of the derivative of the function f(x) at the current approximation xi is

f ′(xi) =
f(xi)− 0
xi − xi+1

So the next Newton approximation (iterate) is
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xi+1 = xi −
f(xi)
f ′(xi)

Fig.4

4.1.1 Algorithm for Newton’s Method

1. Choose a point x1 as an initial guess of the solution.

2. For i=1, 2, ...until the error is smaller than a specified value, calculate xi+1 by using the previous
equation.

4.1.2 Termination Criteria

• In practice, the iterations are stopped when an estimated error is smaller than some predetermined
value. A tolerance in the solution, as in the bisection method, cannot be calculated since bounds are
not known. Two error estimates that are typically used with Newtons method are:

1. Estimated relative error: The iterations are stopped when the estimated relative error is
smaller than a specified value ε

| X(n)
NS −X

(n−1)
NS |

| X(n)
NS |

< ε

2. Tolerance in f(x): the iterations are stopped when the absolute value of f(XNS) is smaller
than some number δ

| f(XNS) |< δ

4.1.3 Additional notes

• Newton’s method can be derived using Taylor series

f(x) = f(x1) + (x− x1)f ′(x1) +
1
2!

(x− x1)2f ′′(x1) + .....

If x2 is a solution of the equation f(x) = 0 and x1 is close to x2 then

f(x2) = 0 = f(x1) + (x2 − x1)f ′(x1) +
1
2!

(x2 − x1)2f ′′(x1) + .....

By considering only the first two terms of the expansion we have
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f(x1) + (x2 − x1)f ′(x1) = 0

and from which

x2 = x1 −
f(x1)
f ′(x1)

• Convergence problems typically occur when the value of f ′(x) is close to zero in the vicinity of the
solution

Fig.5

• There is no general convergence criterion for Newton-Raphson. Its convergence depends on the nature
of the function and on the accuracy of the initial guess. The only remedy is to have an initial guess
that is sufficiently close to the root. And for some functions, no guess will work! Good guesses are
usually predicated on knowledge of the physical problem setting or on devices such as graphs that
provide insight into the behavior of the solution.

• A function f ′(x) has to be substituted in the iterative formula.

4.2 Secant method

The secant method uses two points in the neighborhood of the solution to determine a new estimate for
the solution (Fig.6). The two points (marked as x1 and x2 in the figure) are used to define a straight line
(secant line), and the point where the line intersects the x-axis (marked as x3 in the figure) is the new
estimate for the solution. As shown, the two points can be on one side of the solution or the solution can
be between the two points. The slope of the secant line is given by:

f(x2)− f(x1)
x2 − x1

=
f(x2)

x2 − x3

which can be solved for x3

x3 = x2 −
f(x2)

f(x2)− f(x1)
x2 − x1

Fig.6
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We can now repeat the process. Use x2 and x3 to produce another secant line, and then use its root to
approximate α. This yields the general iteration formula

xn+1 = xn −
f(xn)

f(xn)− f(xn−1)
xn − xn−1

4.2.1 Additional notes

• When the two points that define the secant line are close to each other, the method approximates
Newton’s method.

xn+1 = xn −
f(xn)

f(xn)− f(xn−1)
xn − xn−1

≈ xn −
f(xn)
f ′(xn)

• Unlike Newton’s method, it is not necessary to know the analytical form of f ′(x)

4.3 Fixed-Point iteration method

Open methods employ a formula to predict the root. Such a formula can be developed for simple fixed-
point iteration (or, as it is also called, one-point iteration or successive substitution) by rearranging the
function f(x)= 0 so that x is on the left-hand side of the equation:

x = g(x)

This transformation can be accomplished either by algebraic manipulation or by simply adding x to
both sides of the original equation. For example,

x2 − 2x + 3 = 0

can be simply manipulated to yield

x =
x2 + 3

2
whereas sinx = 0 could be put into the same form by adding x to both sides to yield x = sinx + x

The utility of the previous equation is that it provides a formula to predict a new value of x as a function
of an old value of x. Thus, given an initial guess at the root xi,the equation can be used to compute a new
estimate xi+1 as expressed by the iterative formula

xi+1 = g(xi)

When the method works, the values of x that are obtained are successive iterations that progressively
converge toward the solution. Two such cases are illustrated graphically in Fig.7.

Fig.7
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It is possible, however, that the iterations will not converge toward the fixed point, but rather diverge
away. This is shown in Fig.8. The figure shows that even though the starting point is close to the solution,
the subsequent points are moving farther away from the solution

Fig.8

4.3.1 Choosing the appropriate iteration function g(x)

For a given equation f(x) = 0, the iteration function is not unique since it is possible to change the equation
into the form in different ways. This means that several iteration functions g(x) can be written for the
same equation. A g(x) that should be used for the iteration process is one for which the iterations converge
toward the solution. There might be more than one form that can be used, or it may be that none of
the forms are appropriate so that the fixed-point iteration method cannot be used to solve the equation.
In cases where there are multiple solutions, one iteration function may yield one root, while a different
function yields other roots. Actually, it is possible to determine ahead of time if the iterations converge or
diverge for a specific.

The fixed-point iteration method converges if, in the neighborhood of the fixed point,
the derivative of g(x) has an absolute value that is smaller than 1 (also called Lipschitz
continuous):

| g′(x) |< 1

4.3.2 Additional notes

• As with Newton’s method, the iterations can be stopped either when the relative error or the tolerance
in f(x) is smaller than some predetermined value.

5 MATLAB built in functions

MATLAB has two build in functions for solving equations with one variable. The fzero command can be
used to find a root of any equation, and roots command can be used for finding the roots of a polynomial.

x = fzero(function, xo)

r = roots(p)

where x is the solution, f is the function to be solved, xo a value of x near to where the function crosses
the axis, r is a column vector with the roots of the polynomial, and p is a row vector with the coefficients
of the polynomial.
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6 Equations with multiple solutions

many non linear equations of the form f(x) = 0 have multiple solutions or roots. A general strategy for
finding these roots is

• Determine the approximate location of the roots by defining smaller intervals over which the roots
exist. This can be done by plotting the function (as shown in Fig. 3-21) or by evaluating the function
over a set of successive points and looking for sign changes of the function.

• applying any of the method discussed before over a restricted subinterval.

7 Systems of nonlinear equations

A system of nonlinear equations consists of two or more nonlinear equations that have to be solved simul-
taneously.

7.1 Newton’s method for solving a system of non linear equations

In this section we discuss how a small system of nonlinear equation can be soled using the so called
Newton-Ralphson method, for simplicity the method is illustrated for a system of two equations and two
variables.

Consider solving a system of two non-linear equations of the form f1(x, y) = 0

f2(x, y) = 0

If (x2, y2) are the true solution to the system of equations and if (x1, y1) are estimates to the solution
assumed to be close to the true solution then using Taylor series expansions about (x1, y1) gives us

f1(x2, y2) = 0 = f1(x1, y1) + (x2 − x1)
∂f1

∂x
|x1,y1 +(y2 − y1)

∂f1

∂y
|x1,y1 +......

f2(x2, y2) = 0 = f2(x1, y1) + (x2 − x1)
∂f2

∂x
|x1,y1 +(y2 − y1)

∂f2

∂y
|x1,y1 +.....

Neglecting the higher order terms we get a system of two linear equations which can be solved using
Crammer’s rule 

(x2 − x1)
∂f1

∂x
|x1,y1 +(y2 − y1)

∂f1

∂y
|x1,y1= −f1(x1, y1)

(x2 − x1)
∂f2

∂x
|x1,y1 +(y2 − y1)

∂f2

∂y
|x1,y1= −f2(x1, y1)



(x2 − x1) =
−f1(x1, y1)

∂f2

∂x
|x1,y1 +f2(x1, y1)

∂f1

∂x
|x1,y1

J(f1(x1, y1), f2(x1, y1))

(y2 − y1) =
−f2(x1, y1)

∂f1

∂x
|x1,y1 +f1(x1, y1)

∂f2

∂x
|x1,y1

J(f1(x1, y1), f2(x1, y1))
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where

J(f1, f2) = det


∂f1

∂x

∂f1

∂y
∂f2

∂x

∂f2

∂y

 (1)

Newton’s method can be generalized to the case of a system of n nonlinear equations with n unknowns
such as 

f1(x1, x2, ....., xn) = 0

f2(x1, x2, ....., xn) = 0

fn(x1, x2, ....., xn) = 0

Following the same procedure as described before the next approximation of the solution is obtained
using a Taylor series expansion about the current approximation which result to solving a system of linear
equations of the form 

∂f1

∂x1

∂f1

∂2
....

∂f1

∂xn
∂f2

∂x1

∂f2

∂x2
....

∂f2

∂xn

∂fn

∂x1

∂fn

∂x2
....

∂fn

∂xn




∆x1

∆x2

...

∆xn

 =


−f1

−f2

...

−fn

 (2)

The new approximate solution is obtained from

x1,i+1 = x1,i + ∆x1

x2,i+1 = x2,i + ∆x2

xn,i+1 = xn,i + ∆xn

7.1.1 Additional notes

As with Newton’s method for a single nonlinear equation, convergence is not guaranteed. Newton’s iterative
procedure for solving a system of nonlinear equations will likely converge provided the following three
conditions are met:

• The functions and their derivatives must be continuous and bounded near the solution (root).

• The Jacobian must be nonzero, that is,J(f1, f2, ..., fn) 6= 0 , near the solution.

• The initial estimate (guess) of the solution must be sufficiently close to the true solution.

7.2 Fixed-point iteration method for solving a system of nonlinear equations

The fixed-point iteration method discussed in Section 3.7 for solving a single nonlinear equation can be
extended to the case of a system of nonlinear equations. A system of n nonlinear equations with the
unknowns, x1, x2, ..., xn, has the form:
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f1(x1, x2, ....., xn) = 0

f2(x1, x2, ....., xn) = 0

fn(x1, x2, ....., xn) = 0

The system can be rewritten in the form

x1 = g1(x1, x2, ....., xn)

x2 = g2(x1, x2, ....., xn)

xn = gn(x1, x2, ....., xn)

where the gs are the iteration functions. The solution process starts by guessing a solution, x1,1, x2,1, ..., xn,1,
which is substituted on the right- hand side of the previous equation. The values that are calculated by
this equation are the new (second) estimate of the solution, . The new estimate is substituted back on the
right-hand side of the same equation to give a new solution, and so on. When the method works, the new
estimates of the solution converge toward the true solution. In this case, the process is continued until
the desired accuracy is achieved. For example, the estimated relative error is calculated for each of the
variables, and the iterations are stopped when the largest relative error is smaller than a specified value.

Convergence of the method depends on the form of the iteration functions. For a given problem there
are many possible forms of iteration functions . In general, several forms might be appropriate for one
solution, or in the case where several solutions exist, different iteration functions need to be used to find
the multiple solutions. When using the fixed-point iteration method, one can try various forms of iteration
functions, or it may be possible in some cases to determine ahead of time if the solution will converge for
a specific choice of gs.

The fixed-point iteration method applied to a set of simultaneous nonlinear equations will converge
under the following sufficient (but not necessary) conditions:

• g1, g2, ...., gn, ∂g1
∂x1

, ..., ∂g1
∂xn

, ∂g2
∂x1

, ..., ∂g2
∂xn

, ∂gn

∂x1
, ..., ∂gn

∂xn
are continuous in the neighborhood of the solution.

• 

| ∂g1
∂x1

| + | ∂g1
∂x2

| +..... | ∂g1
∂xn

|≤ 1

| ∂g2
∂x1

| + | ∂g2
∂x2

| +..... | ∂g2
∂xn

|≤ 1

| ∂gn

∂x1
| + | ∂gn

∂x2
| +..... | ∂gn

∂xn
|≤ 1

• The initial guess, x1,1, x2,1, ..., xn,1 is sufficiently close to the solution.
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