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Abstract
In humans and many other mammals, the cortex (the outer layer of the brain) folds during
development. The mechanics of folding are not well understood; leading explanations are
either incomplete or at odds with physical measurements. We propose a mathematical model
in which (i) folding is driven by tangential expansion of the cortex and (ii) deeper layers grow
in response to the resulting stress. In this model the wavelength of cortical folds depends
predictably on the rate of cortical growth relative to the rate of stress-induced growth. We
show analytically and in simulations that faster cortical expansion leads to shorter gyral
wavelengths; slower cortical expansion leads to long wavelengths or even smooth
(lissencephalic) surfaces. No inner or outer (skull) constraint is needed to produce folding, but
initial shape and mechanical heterogeneity influence the final shape. The proposed model
predicts patterns of stress in the tissue that are consistent with experimental observations.

Introduction

Cortical folding is a critical process in brain development.
In the human fetus, cortical folding normally occurs between
the 25th and 40th weeks of gestation. Many other mammals
also have folded (gyrencephalic) brains. In the ferret, cortical
folding occurs post-natally (figure 1), roughly between the
5th and 30th days after birth. Folding in the ferret has
been thoroughly documented in seminal papers by Smart and
McSherry [1, 2] and in more recent work based on MR imaging
[3–5] and detailed histology [6]. Abnormal folding patterns in
the human brain are associated with severe mental or emotional
disorders [7–11]. Disturbances of cortical folding in humans
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include complete absence of folds (lissencephaly), folds that
are abundant but small and shallow (polymicrogyria), and folds
that are fewer and coarser (pachygyria). Despite decades of
intense study [12–15] and speculation, the mechanical basis
of folding remains controversial.

Van Essen [16] has proposed that axonal tension produces
folding by drawing sides of gyri (outward folds) together. This
hypothesis is attractive because it is consistent with efficient
wiring—axons that connect related areas will draw them
together, decreasing the total length of axonal connections.
Heidemann and co-authors [17–19] have shown that axons
in vitro maintain tension. Dissection experiments [20, 21] have
confirmed that white matter in mammalian brains is under
tension, including the white matter in the adult mouse brain
[20] and in both mature and developing ferret brains [21].
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(a) (b)

Figure 1. Summary of cortical folding studies in the ferret [4, 5, 21, 49]. (a) Sequence of cortical surfaces generated from longitudinal MR
imaging studies in the neonatal ferret. PXX = XX days after birth. (b) Coronal slice of P18 ferret brain near the conclusion of the folding
process. The illustration on the right summarizes the results of dissection studies of tissue stress [21]. Initial cuts (dotted lines) open when
tension is normal to the cut. 1—radial cuts through gyri stay closed (showing lack of tension between gyral walls) except at outer surface,
where circumferential tension exists. 2—radial cuts through the bases (fundi) of sulci open in subcortical layers, showing circumferential
tension in these locations. 3—circumferential cuts through gyri open, showing radial tension along the axes of gyri.

However the hypothesis that the walls of gyri are drawn
together by axonal tension is not consistent with observed
patterns of stress in the ferret brain, which reflect tension along,
not across, gyri [21] (figure 1).

Other authors [22, 23] have pointed to differential growth,
in which outer layers grow tangentially at faster rates than
inner layers of the brain, as the driving mechanism of cortical
folding. Richman and co-authors [23] proposed a model for the
formation of cortical folds based on buckling of elastic surface
layers on an elastic foundation. In this scenario, tangential
growth of the outermost layer produces compressive stress that
leads to buckling of this layer, modulated by the stiffness of
the foundation. In terms of developmental neuroanatomy (see
[24]) the outer layers in this model comprise the cortical plate,
and the foundation, or core, captures the aggregate mechanical
behavior of subplate, intermediate zone, subventricular zone,
ventricular zone, and all deeper internal brain structures. In
the Richman model [23], increasing the material stiffness, or
elastic modulus, of the foundation leads to shorter wavelengths
of the buckled layer (cortex). However, this model and other
elastic buckling models [22] rely on a large mismatch in the
elastic moduli of the outer layer (stiffer) and core (softer) to
produce buckling patterns that approximate observed folds. In
fact, the elastic modulus of the outer layer of cortex is not
significantly different than that of inner regions of the brain
[25–27].

The question we address is: what mechanism can produce
folded surfaces with wavelengths consistent with those
observed in nature, and stress patterns consistent with those
seen in dissection experiments, without requiring a difference
in elastic modulus between layers? We propose a model
of folding in which tangential growth of the cortex drives
the folding process. Instead of a purely elastic foundation
[22, 23], or a hard constraint [28], the core is allowed to
grow in response to the resulting stresses. Axons, which are
the major functional component of white matter, are known to
grow in response to imposed tension [19]. The proposed model
produces surface folding in which the wavelength depends on
the rate of cortical growth relative to the rate constant of the
stress–growth relationship in the core. Patterns analogous to
polymicrogyria and pachygyria can be obtained by adjusting
this ratio. The pattern of folding-induced stress is consistent
with observations of stress in the developing ferret brain, in
which tension exists along the radial axis of gyri.

Mathematical model and simulation

Our mathematical model of cortical folding uses the theory
of volumetric growth developed by Rodriguez et al [29]
and applied in many studies since [30–33]. Using standard
continuum mechanics terminology, we designate the location
of a material element in the reference configuration as X
and the corresponding location of the same element in the
deformed configuration as x. The deformation gradient tensor
is F = ∂x

∂X . According to the theory of Rodriguez et al [29],
F is expressed as the product of a growth tensor, G, and an
elastic tensor, F∗:

F = F∗ · G. (1)

Numerous material models have been suggested to describe
the mechanical behavior of brain tissue. Recent studies have
proposed isotropic, hyperelastic or hyper-viscoelastic models
for gray matter [26, 34, 35], and anisotropic, hyperelastic
or hyper-viscoelastic models for white matter [36, 37]. At
relatively short time scales (shorter than those associated with
growth) cortical brain tissue may be roughly approximated
as an isotropic, hyperelastic material [26], so the Cauchy
stress tensor, σ , depends directly on the elastic deformation
according to the constitutive relationship

σ = J∗−1F∗ · ∂W

∂F∗T . (2)

Here W is the strain energy density function for the material
and J∗ = det F∗ is the volume ratio of the elastic deformation.
A standard neo-Hookean material model [38] is used here:

W = μ

2
(I∗

1 J∗−2/3 − 3) + κ

2
(J∗ − 1)2. (3)

The strain energy depends on J∗ and on the first invariant
(trace) of the elastic right Cauchy–Green strain tensor, I∗

1 =
trC∗, where C∗ = F∗T · F∗. The shear modulus, μ, and the
bulk modulus, κ , are the parameters of the hyperelastic model.
Typically tissue is assumed to be nearly incompressible:
κ � μ.

Radial and tangential normal growth are included in
the current model. Simulations are performed in (i) a
two-dimensional (2D) rectangular domain in plane strain,
approximating a section of tissue near the cortical surface,
(ii) a 2D semi-elliptical domain in plain strain (approximating
a section of an elliptical cylinder) and (iii) an axisymmetric
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ellipsoidal domain. In the 2D rectangular and elliptical
domains, growth is modeled using

G = Grerer + Gtetet, (4)

where eie j denotes the tensor product of unit vectors ei and
e j. In the rectangular domain the ‘radial’ direction (normal
to the free surface) is vertical and the tangential direction is
horizontal.

In the axisymmetric ellipsoid, growth is modeled using

G = GReReR + Gtetet + Gteφeφ, (5)

where azimuthal (φ) growth is assumed equal to the in-plane
tangential growth. In equations (4) and (5) the radial and
tangential directions are defined in a standard elliptical or
ellipsoidal coordinate system. In both models, the thin upper
layer (the cortex) grows tangentially only, at a constant rate,
G0. In deeper layers (the foundation, or core) growth ensues
in response to stress:

Cortex: Gt = 1 + G0t, Gr = 1, (6)

Core:
∂Gr

∂t
= a(σrr − σr0)Gr,

∂Gt

∂t
= a(σtt − σt0)Gt . (7)

The parameters σr0 and σt0 are ‘target’ stresses for the core;
growth will continue until these stress values are reached.
The parameter a (units: 1/Pa s or 1/Pa h) determines how
rapidly variations in growth occur in response to variations in
radial or tangential normal stress (σrr or σtt). For simplicity
we assume a is the same in both directions. A very rough
estimate of a ∼ 3×10−3/Pa h may be obtained for white matter
from the experiments of Chada et al [19] who determined
neurite elongation rates of 200 μm h−1 under tension of 2 nN
(200 μdyne).

The stiffness of the material in the core will also
affect how quickly it responds to cortical growth. For an
incompressible material undergoing small, uniaxial, plane-
strain deformations, the stress–strain relationship is σ = 4μ f ε,
where ε is the strain and μ f is the shear modulus of the core
(the subscript f denoting ‘foundation’ is used to distinguish
core from cortex). Defining dimensionless stress σ̄ = σ/4μ f ,
we can rewrite equation (7) as
∂Gr

∂t
= 4μ f a(σ̄rr − σ̄r0)Gr,

∂Gt

∂t
= 4μ f a(σ̄tt − σ̄t0)Gt . (8)

It is apparent that the rate constant governing the response
of the core to imposed deformation is R f = 4aμ f (units:
1/s). Fully dimensionless versions of equations (6)–(7) can be
obtained using τ = G0t:

Cortex : Gt = 1 + τ, Gr = 1, (9)

Core :
∂Gr

∂τ
= R f

G0
(σ̄rr − σ̄r0)Gr,

∂Gt

∂τ
= R f

G0
(σ̄tt − σ̄t0)Gt .

(10)

Finite element simulations of the rectangular, elliptical
and ellipsoidal models were performed using COMSOL
Multiphysics software (V.4.3, COMSOL Inc., Burlington,
MA). Routine simulations in the rectangular domain were
performed with 2412 rectangular elements; in the 2D ellipse

and axisymmetric ellipsoid the domain was discretized
into 2498 triangular elements. Quasi-static, time-dependent
simulations were performed with the COMSOL backward
differentiation formula (BDF) algorithm with maximum
absolute error tolerance <10−7 and relative error tolerance
<10−6. Since the locations of spatial instabilities are extremely
sensitive to imperfections in numerical models, small
imperfections were deliberately introduced by simulating
low levels of radial growth in the core in the early stages
of the simulation. Folding was typically initiated by these
imperfections but the folding pattern was not solely determined
by the imperfection field. The robustness of solutions with
respect to discretization (mesh size and time step) was
confirmed by reproducing results with finer mesh resolution
and smaller error tolerances.

Analytical prediction of critical stress and wavelength

The time scale of folding is long enough for the brain to
grow significantly in response to stress; such growth in the
core would lead to relaxation of the stresses induced by
cortical growth. The behavior of the core thus approximates
the response of a viscoelastic material, specifically a Maxwell
fluid. Biot [39] developed a theory for the folding instability
of a thin, laterally compressed, viscoelastic plate embedded
in a viscoelastic continuum. The theory of Biot [39] may be
extended to the situation in which compressive stress is due
to tangential growth of a thin elastic plate with thickness h
(the cortex) and the embedding medium grows according to
the laws in equation (7). According to this analysis (shown in
the appendix) we predict that the wavelength of folds, λ, will
depend on the ratio 	G = G0/R f , the ratio of cortical growth
to the rate constant of stress-induced growth, and β = μ/μ f ,
the ratio of the short-term elastic moduli of cortex (μ) and core
(μ f ). Specifically we predict that

λ

h
= 2π

(
β(	 + 1)

3	

)1/3

, (11)

where 	 is the largest positive real root of the polynomial
equation,

	5 − 64

9
β2	3

G(	2 + 2	 + 1) = 0. (12)

In this analysis, existence of at least one positive real root of
equation (12) indicates that folding will occur at the given
values of growth rate and material parameters. In this study,
for each parameter combination only one real root of equation
(12) was found and thus only one wavelength is predicted.

Results

Simulations

Growth was simulated using the mathematical description
given by equations (1)–(10). The material models for both
cortex and subcortical foundation were hyperelastic (neo-
Hookean). In the cortex, the constant growth rate in the
direction tangent to the surface was specified to be G0, and
there was no growth in the radial direction (normal to the
cortical surface). In the foundation, tangential and radial
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Figure 2. Effects of cortical growth rate on wavelength, subcortical growth, and stress in the basic model of cortical folding. Target stresses
σ̄r0 = σ̄t0 = 0. Columns: radial growth Gr; tangential growth Gt ; radial stress σr; tangential stress σt . (Row 1) 	G = 2.5 × 10−2, scaled time
τ = 0.060; (Row 2) 	G = 2.5 × 10−3, τ = 0.035; (Row 3) 	G = 2.5 × 10−4, τ = 0.014; (Row 4) 	G = 2.5 × 10−5, τ = 0.008. The modulus
ratio β = 1 in all cases.

growth were stimulated by corresponding stress components,
as described by the first-order relationships in equation (7).

In all simulations the modulus ratio β between cortex and
core was set to 1 unless noted otherwise. Using the rough
estimates a ∼ 3 × 10−3/Pa h and shear modulus μ∼ 300 Pa
leads to an estimate of the growth rate constant R f ∼ 1/h
for axons in vitro, which is probably an upper bound for
heterogeneous tissue in vivo. In the ferret the surface area
doubles roughly every 4 days during the period of folding; this
corresponds to a circumferential growth rate G0 ∼ 0.01/h–
0.04/h. Results are described at specific values of scaled time:
τ = G0t.

Effect of growth rate on folding wavelength

Simulations of a growing cortical plate of thickness h = 0.05
on a rectangular foundation of length L = 2 and H = 1
were performed while varying the ratio (	G) of the cortical
growth rate, G0, to the rate constant, R f , governing the stress-
induced growth of subcortical layers. To ensure that folding
was initiated in the center of the domain, a small initial
imperfection was introduced by specifying small, positive
radial growth in a narrow central band of width δ in the core,
using the following modified version of equation (10). The
final pattern was insensitive to δ for δ � 0.1, so δ = 0.05 was
used:

∂Gr

∂τ
= 1

	G
(σ̄rr − σ̄r0) Gr + F(x, τ );

F (x, τ ) =
⎧⎨
⎩

1

	G
τ, for |x| < δ and τ < 0.01

0, otherwise
. (13)

(a)

(b)

Figure 3. Folding wavelength is proportional to cortical thickness
for a given value of cortical tangential growth rate. (a) Cortical
thickness h = 0.03. (b) h = 0.07. Parameters: 	G = 2.5 × 10−3;
β = 1.

The results of these simulations are shown in figure 2, which
depicts the growth ratios Gr and Gt , and the growth-induced
stresses σrr, and σtt for 	G = G0/R f = 2.5 × 10−2,
2.5 × 10−3, 2.5 × 10−4 and 2.5 × 10−5. The wavelength
clearly increases as the cortical growth ratio 	G decreases.
Also, as expected, the wavelength in simulations scales with
the thickness of the cortical layer (figure 3). The wavelengths
observed in simulations are close to the wavelengths predicted
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(a) (b)

Figure 4. (a) Effect of cortical growth rate on the gyral wavelength predicted by equations (11)–(12) for three values of the stiffness ratio β.
(b) Solid line: wavelengths predicted from equations (11) and (12) for β = 1. Dotted line and open circles: wavelengths observed in
simulations.

using equations (11) and (12) (figure 4) and clearly follow the
analytically-predicted trend.

Patterns of differential growth and stress

Some features of the patterns of growth-induced stress
observed in figure 2 are consistent with previous experimental
observations of tissue stress [21] summarized in figure 1.
Radial tension is evident within the core of gyri, and tangential
tension in the core is highest below fundi. However, in the
model tangential tension is also seen within the core of gyri.
We hypothesized that the tangential tension in the outermost
layer of the core arises because in the basic model growth is
imposed only in the cortex, which is modeled as a completely
separate outer layer. Tangential growth thus occurs in the outer
core only in response to stress, leading to a sharp discontinuity
in tangential growth at the interface. In reality, there is a fairly
smooth gradient in tangential growth [6] from the outer cortical
layer. We model this by having the target tangential stress in
the outer core track the imposed compressive tangential stress
in the cortex and decay smoothly and rapidly with distance
from the interface (r = H):

σt0 = −4μτ e20(r−H). (14)

With this modification the dependence of wavelength on
cortical growth rate is maintained, but the tangential stress
within gyri becomes compressive (figure 5), consistent with
observations (figure 1) [21].

Effects of shape, initial conditions and cortical growth rate

To consider the effects of the geometry of the entire brain while
retaining computational simplicity, we simulated cortical
growth in (i) a cylinder with elliptical cross section, and
(ii) an axisymmetric ellipsoid. A 2D elliptical region
undergoing plane strain was used to model the cylindrical case.
In both cases the major and minor semi-axes of the elliptical
cross-section were A = 1.2 and B = 1.0 and the thickness
of the cortical layer was h = 0.05. In the 2D ellipse, the

radial coordinate r =√
x2

A2 + y2

B2 and in the axisymmetric ellipsoid
R =√

z2

A2 + r2

B2 .
As in the rectangular domain, folding was facilitated by

specifying initial radial growth in the core, either in a small
band (as in equation (13), but for |θ | < δ), or as a harmonic or
random field equation

∂Gr

∂τ
= 1

	G
(σ̄rr − σ̄r0) Gr + F(r, θ, τ )

{
F (r, θ, τ ) = F0τ cos kθ; τ < 0.10 or
F (r, θ, τ ) = F0τ random(r, θ ); τ < 0.10

. (15)

Here F0 defines the magnitude of the initial shape perturbation.
Both the elliptical geometry and the initial conditions
influenced folding patterns. At similar parameter values,
longer wavelengths were seen in the ellipse and ellipsoid
than in the rectangular domain (figure 6), but the general
dependence of wavelength on cortical growth rate remained.
Converged folded solutions were found in a smaller range
of 	G; at small 	G the growth of the core prevented critical
compressive stress from being reached and at large 	G the core
seemed too stiff to allow significant deflection.

Cortical growth rate affects wavelength in the 2D elliptical
domain and axisymmetric ellipsoid, as in the rectangular
domain. In the ellipse and ellipsoid, simulations typically
show that the instability occurs later, allowing the domain
to expand significantly (figure 6). We observe that, as in the
rectangular domain, the wavelength increases as 	G decreases;
however the number of waves per angular increment remains
fairly constant. For a given value of 	G the wavelength
λrectangle < λellipse < λellipsoid, which is consistent with the
structural stiffening effect of curvature.

Folding patterns exhibited by the elliptical cylinder in
response to cortical growth (equations (1)–(10), (15)) are
shown in figure 7 for three sets of harmonic and random
initial conditions. Note that the final shape appears to be
affected by even slight variations in the initial shape. However,
fine-grained random initial conditions lead to a relatively
coarse folding pattern, confirming that material and structural
properties play an important role in determining wavelength.
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Figure 5. Effects of cortical growth rate on wavelength, subcortical growth, and stress in the cortical folding model with a compressive target
stress in the outer core. Columns: radial growth Gr; tangential growth Gt ; radial stress σr; tangential stress σt . (Row 1) 	G = 2.5 × 10−2,
τ = 0.059; (Row 2) 	G = 2.5 × 10−3, τ = 0.034; (Row 3) 	G = 2.5 × 10−4, τ = 0.013; (Row 4) 	G = 2.5 × 10−5, τ = 0.0048.

(a) (b)

Figure 6. Folding in (a) the elliptical cylinder (plane strain) model and (b) the axisymmetric ellipsoid model. Color encodes tangential
growth Gt .

Heterogeneous initial conditions do not completely
determine the final shape; the cortical growth rate remains
important. In figure 9 (row 1) we see that the initial field
with spatial frequency four time less than the initial field in
figure 8 leads to a final field with the same short wavelength;
the growth rate 	G = 0.50 appears to be the critical factor.
For the identical initial conditions but slower cortical growth
(	G = 0.20) almost no folding occurs (figure 9, row 2).
Amplifying the initial radial growth of the core to the point
that initial shape is clearly deformed (figure 10) leads to hybrid

shapes with both wavelengths represented. One interpretation
of figure 10 is that the initial shape determines the locations
of primary folds, and the cortical growth rate mediates the
formation of secondary gyri and sulci.

Effects of spatial variations in tangential cortical growth

The consistent locations of primary cortical folds might,
alternatively, be due to intrinsic spatial variations in cortical
growth rate. The qualitative effects of such variations can be
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Figure 7. Effects of initial shape perturbation on wavelength, subcortical growth, and stress in the 2D elliptical (cylinder) model with a
compressive target stress in the outer core. Initial radial growth in the core was attained with equation (15) with F (R, θ, τ ) = F0τ cos kθ for
τ < 0.10. Columns: initial radial growth Gr at τ = 0.10; radial growth Gr; tangential growth Gt ; radial stress σr; tangential stress σt . Row 1:
F (r, θ, τ ) = 10τ cos 32θ for τ < 0.10, shown at τ = 0.90. Row 2: F (r, θ, τ ) = 10τ cos 8θ for τ < 0.10, shown at τ = 0.60; Row 3:
F (r, θ, τ ) = 50τ random (r, θ ) for τ < 0.10, shown at τ = 1.2. In all rows 	G = 0.20.

Figure 8. Effects of cortical growth on wavelength, subcortical growth, and stress in the axisymmetric ellipsoid model. Initial radial growth
in the core was attained with equation (15) with F (R, θ, τ ) = 10τ cos 32θ for τ < 0.1. Columns: initial radial growth GR at τ = 0.10; radial
growth GR; tangential growth Gt ; radial stress σr; tangential stress σt ; 3D view of radial stress σr. Row 1: 	G = 0.50, τ = 0.90. Row 2:
	G = 0.20, τ = 1.25.

captured by replacing the dimensionless equation for uniform
cortical growth (equation (9)) with

Cortex : Gt = 1 + τ (1 + 0.1 cos 8θ ). (16)

No initial imperfection or growth in the core was imposed.
These spatial variations in tangential growth appear to drive
the ellipsoid toward a final shape with the same number of

lobes as the growth pattern, with gyri at regions of greatest
expansion and sulci at regions of least expansion (figure 11).
However, short wavelength instabilities may be superimposed
on this pattern (figure 11, row 1) if the cortical growth rate is
high enough. If intrinsic variations in tangential growth rate
do indeed lead to consistently located primary folds, growth-
induced instability remains the likely cause of secondary gyri.
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Figure 9. The effects of cortical growth rate and small variations in
initial conditions. Initial radial growth in the core was imposed
according to equations (15) with F (R, θ, τ ) = 10τ cos 8θ for
τ < 0.10. Columns: initial radial growth GR at τ = 0.10; radial
growth GR; tangential growth Gt 3D view of radial stress σr Row 1:
	G = 0.50, τ = 0.90. Row 2: 	G = 0.20, τ = 1.25.

Figure 10. The effects of cortical growth rate and larger initial
perturbations. Initial radial growth in the core was imposed
according to equation (15) with F (R, θ, τ ) = 50τ cos 8θ for
τ < 0.10. Columns: initial radial growth GR at τ = 0.10; radial
growth GR; tangential growth Gt ; 3D view of radial stress σr. Row 1:
	G = 0.50, τ = 0.90. Row 2: 	G = 0.20, τ = 1.25.

Figure 11. The effect of spatial variation of cortical growth rate.
Spatial variations of tangential growth in the cortex were imposed
according to equation (16) with Gt = 1 + τ (1 + 0.1 cos 8θ ).
Columns: tangential growth Gt at τ = 0.10; radial growth GR;
tangential growth Gt ; 3D view of radial stress σr. Row 1:
	G = 0.50, τ = 1.00. Row 2: 	G = 0.20, τ = 1.25.

Discussion

Evaluation of cortical folding hypotheses

The analysis and simulations presented here support the
hypothesis that differential tangential growth of the cortex,
rather than axonal tension, drives the folding process. The
current model is distinct from previous models of differential
growth that treat the brain as a layered elastic body [22, 23].
The essential feature of the current model is that deeper layers
grow in response to stresses developed by cortical expansion.
While axonal tension-driven models [16] and models in which
the cortex is pushed outward by growth [40] may produce
realistic shapes similar to the folded brain, geometric similarity
is not strong evidence of the underlying hypotheses. The
stress states predicted by such models are not consistent with
experimental observations described in [21]. The predictions
of the current model, using reasonable estimates of parameters
from experimental studies [5, 19] are consistent with both
observed folding patterns and observed stress distributions
[21].

We previously introduced a model of cortical folding [21]
which also included stress-dependent growth in deeper layers.
The prior model included more layers with different specified
growth rates in each layer, but relied on limiting cortical growth
to a specific region to induce a single local fold in that region.
In contrast, the current model relies on instability to produce
folding patterns in which wavelength depends on the relative
rates of growth.

While growth-induced instability is suggested to underlie
the more random, shorter-wavelength secondary folds, two

8
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candidate mechanisms are identified for the formation of
primary gyri. (i) Heterogeneous radial growth before the period
of folding may set up small variations in initial conditions
(shape, stiffness, or stress) that are amplified by tangential
expansion of the cortex. We note that axonal tension, while
not actively producing folds, may be an important feature of
such an initial state. (ii) Tangential cortical expansion itself
may be heterogeneous, as in [21]. Current experimental data
do not disprove either of these possibilities. It is clear that
the shape of the brain before folding is not perfectly smooth
[1–4]; we have also observed that on a coarse scale, cortical
expansion is non-uniform [5]. More precise and better resolved
measurements are needed to determine the relative importance
of these mechanisms in determining gyral location.

Some investigators have made important predictions
regarding cortical folding without directly addressing the
causal mechanism. Todd [41] suggested that initial curvature
determines the folding pattern, with sulci evolving from lines
of minimal curvature. This is consistent with the effects of
initial shape exhibited by the current model. Prothero and
Sundstren [42] use scaling arguments to arrive at plausible
shapes, but do not address mechanical forces.

Elastic and hyperelastic models of wrinkling and creasing of
soft tissue

A number of recent theoretical studies [28, 43–47] have
demonstrated that instabilities of surfaces or layers in elastic
and hyperelastic materials arise in response to compression
or constrained growth. These models of soft hyperelastic
materials can produce folds or creases like those seen in
the brain. The current model shares many of the features
of these elastic models, but emphasizes the role of stress-
induced growth, rather than elastic deformation, in predicting
the geometry, wavelengths and stress fields associated with
folding. The current model not only produces reasonable
predictions of folding patterns and stress distributions, but
more accurately reflects the behavior of the living brain tissue
on these time scales.

Limitations

Both analytical predictions of gyral wavelength and numerical
simulations were performed. There is a consistent discrepancy
of approximately 25% between the wavelengths observed
in simulations and the predictions of the stability analysis
(figure 4, equations (11)–(12), and the appendix). The analysis
is based on the simplest theoretical model developed by
Biot [39] for folding of a viscoelastic layer embedded in a
viscoelastic medium. In this model, the adhesion (tangential
traction) between core and cortex was neglected, and the
dimensions of the foundation (L, H) were assumed to be
infinite. Furthermore, the replacement of the operator R by
the inverse of the time to reach critical stress, R = 1

TP
=

4μG0/σP, is an ad hoc assumption that is physically reasonable
but not mathematically precise. Despite the relatively small
quantitative discrepancy between equations (11) and (12) and
simulations, the correct prediction of the inverse relationship

between growth rate and wavelength is a valuable insight from
the analysis.

Although cortical folding is truly a 3D process,
simulations were performed in 2D, assuming either plane
strain conditions or axisymmetric deformation. While 2D
mechanical models have proven useful for understanding 3D
behavior, it is clear that ultimately 3D models will be required
to study characteristic folding patterns. Similarly, the boundary
conditions in the current model, particularly the assumption of
zero force on the cortical surface, are idealized. Our results
show that boundary forces are not necessary to produce
folding, but do not exclude the possibility that boundary
conditions play an important role. Also, other mechanisms
(such as axonal connectivity) could modulate shapes produced
by differential cortical expansion and stress-induced growth.

Future work

The current study is focused on the generic mechanisms that
govern the initial formation and wavelengths of gyri. Further
numerical studies should explore the large-deformation,
‘post-buckled’ behavior of these models. Such studies will
need to exploit more advanced simulation techniques to
achieve convergence and accuracy under these conditions. The
domains of the current simulations are extremely simple; the
extension of modeling and simulation to the full 3D case with
realistic initial shapes (as in [43]) is clearly warranted.

Conclusions

A model of cortical folding based on differential growth, in
which the stiffnesses of the cortex and interior regions of the
brain are similar, can explain both (i) variations in wavelength
of folds and (ii) the stress fields observed in the developing
brain. Cortical growth rate, relative to how quickly the core
grows in response to stress, affects the wavelength of cortical
folds; more rapid cortical expansion generally leads to shorter
wavelengths. Wavelengths also scale directly with cortical
thickness. Finally, the initial shape before tangential cortical
expansion, and spatial variations in tangential expansion itself,
also affect the final shape.
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Appendix

A closed-form prediction for cortical wavelength is derived, in
terms of the cortical growth rate and the mechanical properties
of the cortical and subcortical regions. We follow the analysis
by Biot [39] of folding of a viscoelastic plate on a viscoelastic
foundation. We begin by modeling the cortex as a thin elastic
plate (thickness h, width b, length L, Young’s modulus E,
Poisson’s ratio ν) on a continuous elastic foundation, or core
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Figure A1. A thin elastic beam on an elastic foundation, under
compressive loading.

(thickness H, width b, length L, Young’s modulus E f , Poisson’s
ratio ν f ) undergoing plane strain deformation while under a
compressive axial load, P (figure A1). The equation for quasi-
static deflections of the plate, neglecting tangential traction
forces between the plate and foundation, is

E

1 − ν2

bh3

12

∂4w

∂x4
+ P

∂2w

∂x2
= q. (A.1)

The vertical force per unit length q is related to the
deflection w by the stiffness of the foundation. If w is
sinusoidal, then q is also sinusoidal with amplitude dependent
on the amplitude, w0, and spatial frequency, γ , of w [39]:

w = w0 cos γ x, (A.2)

q = q0 cos γ x, (A.3)

q0 = −γ bE f

2(1 − ν2
f )

w0. (A.4)

The wavelength of the sinusoidal solution is λ = 2π/γ .
(As an aside, we note that in the classic Winkler foundation
model, represented by an array of linear springs, the foundation
stiffness k = q0/w0 is independent of spatial frequency.) The
compressive load, P, on the thin plate can be expressed in
terms of the compressive stress, σP:

P = σPbh. (A.5)

Substituting the expressions for w, q and P above into
the equation of equilibrium, and limiting our discussion to
the case where both plate and foundation are incompressible
( E

1−ν2 = 4μ and E f

1−ν2
f

= 4μ f ) the solution becomes unstable

when
μh3

3
γ 4 − σPhγ 2 = −2μ f γ , (A.6)

or

σP = μ

3
h2γ 2 + 2μ f

hγ
. (A.7)

The critical stress σPcr at which a specific harmonic solution
becomes unstable depends on the scaled wavenumber hγ =
2πh/λ. The solution with minimal critical stress is found by
setting ∂σP

∂(hγ )
= 0, leading to the following expressions for

critical stress and wavelength:

σPcr = 3μ

(
μ

3μ f

)1/3

, (A.8)

Figure A2. (a) If no subcortical growth occurs in response to stress,
the cortex is like the beam on an elastic foundation. (b) If growth
occurs in response to stress, the core acts like a viscoelastic
(Maxwell) foundation, responding like a solid for fast deformations
and like a fluid at slow strain rates.

λ = 2πh

(
μ

3μ f

)1/3

. (A.9)

Because stress induces growth over time scale of interest [19]
the core does not act like a purely elastic system. Rather it
relaxes after the application of stress, like the spring-dashpot
foundation in figure A.2. This behavior is approximated by the
classic Maxwell model of a viscoelastic fluid. For a Maxwell
fluid, the force–displacement relation (equation (A.4)) for the
foundation is replaced by

q̇0 + 1

τ f
q0 = −2μ f γ bẇ0. (A.10)

Defining the operator R = d
dt as in [39], we rewrite the equation

above as

q0 = −2μ f γ b
R

R + R f
w0, (A.11)

where R f = 1
τ f

is the rate constant of the foundation. When
R � R f the foundation behaves like a fluid; when R � R f it
acts like a solid.

Applying the correspondence principle [48], we substitute
the new expression into the equation of motion and evaluate
the conditions for stability. The critical load and wavelength
now depend on R and R f [39]:

σPcr = 3μ f
R

R + R f

(
μ(R + R f )

3μ f R

)1/3

, (A.12)

λ = 2πh

(
μ(R + R f )

3μ f R

)1/3

. (A.13)

In these expressions it is clear that choosing R to be small
(slow deformations) leads to small critical load and long
wavelength—the foundation appears soft. When R is large
(relatively rapid, but still quasi-static deformation), the critical
load increases and the wavelength decreases, approximating
the response of a beam on a stiff foundation.

10
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A.1. Extension to growth: an elastic layer growing on a
viscoelastic foundation

The ‘viscoelastic rate constant’ of the growing foundation is
R f = 4aμ f (equation (8)). To choose the value of the operator
R, we consider how long it will take to achieve the critical
stress in the growing cortex. If the growth rate in the cortex is
G0, the critical compressive stress σPcr ≈ 4μG0TP, where TP

is the ‘critical time’ when buckling occurs. If we set the value
of R = 1/TP, and thus set σP = 4μG0/R in the equation for
the critical stress (A.12) we obtain a polynomial in R:

R5 − 64μ2G3
0

9μ2
f

(
R2 + 2R f R + R2

f

) = 0. (A.14)

This equation can be rewritten in terms of the scaled operator
	 = R/R f and the dimensionless parameters 	G = G0/R f

and β = μ/μ f . We obtain

	5 − 64

9
β2	3

G(	2 + 2	 + 1) = 0. (A.15)

The existence of at least one positive real root of equations
(A.15) and (12 in the main text) indicates that the critical load
(equation (A.12)) will be reached at the given ratios of growth
rate and material parameters. The corresponding wavelength
is given by equations (A.17) and (11 in the main text):

σPcr

μ
= 3	

β(	 + 1)

(
β (	 + 1)

3	

) 1
3

, (A.16)

λ

h
= 2π

(
β(	 + 1)

3	

)1/3

. (A.17)

Equations (A.15–A.17) show that the wavelength and critical
stress depend on these two dimensionless parameters: β, the
ratio of the short-term elastic moduli of cortex and core, and
	G, the ratio of cortical expansion rate to the rate constant of
stress-induced growth.
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