Final

Date: 12/09/2020, Wednesday
Time: 3:00-4:50 p.m.
Name:
Q1) Determine the transfer function $H(z)$ for the system described by the difference equation

$$
y[n+2]+5 y[n+1]+6 y[n]=5 x[n+1] .
$$

Q2) A causal system whose transfer function is $H(z)=\frac{z}{z^{2}+0.2 z-0.48}$
a) Find the impulse response $h[n]$
b) Find $h[n]$ if the above $H(z)$ is modified such that its numerator is $\mathrm{ze}^{-5 z}$. Hint: use the answer in part a.
c) What is the impact of the modification in part \mathbf{b} on the system behavior?

Q3) Using the definition to find the z-transforms, including ROCs, of the signal $x[n]=9-n$ for $0 \leq n \leq 9$. After you evaluate the summation, you do not need to simplify your answer any further.

Q4) A system is described as $y[n+1]-0.3 y[n]=3 x[n+1]$, with $y[-1]=1$, and input $x[n]=(0.5)^{n} u[n]$.
a) Determine the zero-input response $y_{z i}[n]$.
b) Determine the zero-state response $y_{z s}[n]$.

Q5) A system has the transfer function $H(z)=\frac{z+2}{z(z-2 j)(z+2 j)}$
a) Determine the poles and the zeros of the system.
b) Is this system stable? Explain.
c) Find the frequency response of the system $H(\Omega)$

Q6) For the system with the transfer function $H(z)=\frac{3 z^{2}-1.8}{z^{2}-z+0.16}$
a) Find the direct form II realization
b) Find the transpose direct form II realization
c) Find the difference equation that describe the system.

Q7) Design and state the transfer function $H(z)$ of the digital filter that has the frequency response shown below. Plot the poles and zeros on the z-plane and find the frequencies in Hz for $\pi / 4$ and $3 \pi / 4$ if the sampling rate is 16 kHz . You do not need to find the exact distances from the center of the unit circle to the poles, label them as d_{1}, d_{2}, and so forth. However, you need to indicate which distance is the largest to create the peaks at $\pi / 4$ and $3 \pi / 4$.

Bonus: Do problem 4 part c in homework 10 for chapter 7.

