|    | Window $w(t)$                                                                                                                                                   | Main<br>Lobe<br>Width | Rolloff<br>Rate<br>[dB/dec] | Peak Side<br>Lobe Level<br>[dB] |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-----------------------------|---------------------------------|
| 1. | Rectangular:<br>$\Pi\left(\frac{t}{T}\right)$                                                                                                                   | $\frac{4\pi}{T}$      | -20                         | -13.3                           |
| 2. | Triangular (Bartlett):<br>$\Lambda\left(\frac{t}{T}\right)$                                                                                                     | $\frac{8\pi}{T}$      | -40                         | -26.5                           |
| 3. | Hann:<br>$\frac{1}{2} \left[ 1 + \cos\left(\frac{2\pi t}{T}\right) \right] \Pi\left(\frac{t}{T}\right)$                                                         | $\frac{8\pi}{T}$      | -60                         | -31.5                           |
| 4. | Hamming:<br>$\left[0.54 + 0.46 \cos\left(\frac{2\pi t}{T}\right)\right] \Pi\left(\frac{t}{T}\right)$                                                            | $\frac{8\pi}{T}$      | -20                         | -42.7                           |
| 5. | Blackman:<br>$\begin{bmatrix} 0.42 + 0.5 \cos\left(\frac{2\pi t}{T}\right) + 0.08 \cos\left(\frac{4\pi t}{T}\right) \end{bmatrix} \Pi \left(\frac{t}{T}\right)$ | $\frac{12\pi}{T}$     | -60                         | -58.1                           |
| 6. | Kaiser:<br>$\frac{I_0\left(\alpha\sqrt{1-4\left(\frac{t}{T}\right)^2}\right)}{I_0(\alpha)}\Pi\left(\frac{t}{T}\right)$                                          | varies with $\alpha$  | -20                         | varies with $\alpha$            |







$$s \to \omega_0 \frac{s (\omega_2 - \omega_1)}{s^2 + \omega_1 \omega_2} \qquad \omega \to \omega_0 \frac{\omega (\omega_2 - \omega_1)}{-\omega^2 + \omega_1 \omega_2}$$
$$H_{\rm bs}(s) = H_{\rm p} \left( \omega_0 \frac{s (\omega_2 - \omega_1)}{s^2 + \omega_1 \omega_2} \right)$$
$$H_{\rm bs}(\omega) = H_{\rm p} \left( \omega_0 \frac{\omega (\omega_2 - \omega_1)}{-\omega^2 + \omega_1 \omega_2} \right)$$

### **Butterworth Filters**



$$H(j\omega)| = \frac{1}{\sqrt{1 + \left(\frac{\omega}{\omega_c}\right)^{2K}}} \quad H(s) = \frac{\omega_c^K}{\prod_{k=1}^K (s - p_k)}$$

$$p_{k} = j\omega_{c}e^{\frac{2\pi}{2K}(2k-1)} \qquad k = 1, 2, 3, \dots, 2K$$

$$\left[\pi(2k-1)\right] \qquad \left[\pi(2k-1)\right]$$

$$p_k = -\omega_c \sin\left[\frac{\pi(2\kappa-1)}{2K}\right] + j\omega_c \cos\left[\frac{\pi(2\kappa-1)}{2K}\right]$$

| K | $a_7$    | $a_6$     | $a_5$     | $a_4$     | $a_3$     | $a_2$     | $a_1$    |
|---|----------|-----------|-----------|-----------|-----------|-----------|----------|
| 2 |          |           |           |           |           |           | 1.414214 |
| 3 |          |           |           |           |           | 2.000000  | 2.000000 |
| 4 |          |           |           |           | 2.613126  | 3.414214  | 2.613126 |
| 5 |          |           |           | 3.236068  | 5.236068  | 5.236068  | 3.236068 |
| 6 |          |           | 3.863703  | 7.464102  | 9.141620  | 7.464102  | 3.863703 |
| 7 |          | 4.493959  | 10.097835 | 14.591794 | 14.591794 | 10.097835 | 4.493959 |
| 8 | 5.125831 | 13.137071 | 21.846151 | 25.688356 | 21.846151 | 13.137071 | 5.125831 |
|   |          |           |           |           |           |           |          |



$$\begin{aligned} \alpha_{\rm p} &= -20 \log_{10} |H(j\omega_{\rm p})| = 10 \log_{10} \left[ 1 + \left(\frac{\omega_{\rm p}}{\omega_{\rm c}}\right)^{2K} \right] \\ \alpha_{\rm s} &= -20 \log_{10} |H(j\omega_{\rm s})| = 10 \log_{10} \left[ 1 + \left(\frac{\omega_{\rm s}}{\omega_{\rm c}}\right)^{2K} \right] \\ K &= \left[ \frac{\log \left[ \left(10^{\alpha_{\rm s}/10} - 1\right) / \left(10^{\alpha_{\rm p}/10} - 1\right) \right]}{2 \log(\omega_{\rm s}/\omega_{\rm p})} \right] \\ \frac{\omega_{\rm p}}{\left(10^{\alpha_{\rm p}/10} - 1\right)^{1/2K}} \le \omega_{\rm c} \le \frac{\omega_{\rm s}}{\left(10^{\alpha_{\rm s}/10} - 1\right)^{1/2K}} \end{aligned}$$

# **Chebyshev Filters**

$$|H(j\omega)| = \frac{1}{\sqrt{1 + \epsilon^2 C_K^2 \left(\frac{\omega}{\omega_p}\right)}}$$

$$\int_{\frac{1}{\sqrt{1 + \epsilon^2}}} \int_{\frac{1}{\omega_p}} \int_{\frac{1}{\omega_p}}$$

$$\begin{aligned} \alpha_P &= 10\log_{10}(1+\epsilon^2) \qquad \epsilon^2 = 10^{\alpha_P/10} - 1\\ |H(j0)| &= \left\{ \begin{array}{ll} 1 & K \text{ odd} \\ \frac{1}{\sqrt{1+\epsilon^2}} & K \text{ even} \end{array} \right. \text{ and } \left|H(j\omega_{\rm p})\right| = \frac{1}{\sqrt{1+\epsilon^2}} \\ \alpha_{\rm s} &= -20\log_{10}|H(j\omega_{\rm s})| = 10\log_{10}\left[1+\epsilon^2C_K^2\left(\frac{\omega_{\rm s}}{\omega_{\rm p}}\right)\right] \\ K &= \left[ \frac{\cosh^{-1}\sqrt{\left(10^{\alpha_{\rm s}/10} - 1\right)/\left(10^{\alpha_{\rm p}/10} - 1\right)}}{\cosh^{-1}(\omega_{\rm s}/\omega_{\rm p})} \right] \\ p_k &= -\omega_{\rm p}\sinh\left[\frac{1}{K}\sinh^{-1}\left(\frac{1}{\epsilon}\right)\right]\sin\left[\frac{\pi(2k-1)}{2K}\right] + \\ j\omega_{\rm p}\cosh\left[\frac{1}{K}\sinh^{-1}\left(\frac{1}{\epsilon}\right)\right]\cos\left[\frac{\pi(2k-1)}{2K}\right] \quad k = 1, 2, \dots, K \end{aligned}$$

Coefficients of normalized Chebyshev denominator poly.

$$s^{K} + a_{K-1}s^{K-1} + \dots + a_{1}s + a_{0}$$

| K | $a_6$               | $a_5$      | $a_4$    | $a_3$    | $a_2$    | $a_1$    | $a_0$    |
|---|---------------------|------------|----------|----------|----------|----------|----------|
| 1 | $0.1 \mathrm{dB}$   | of ripple  |          |          |          |          | 6.552203 |
| 2 | $(\alpha_{\rm p} =$ | = 0.1)     |          |          |          | 2.372356 | 3.314037 |
| 3 | • •                 |            |          |          | 1.938811 | 2.629495 | 1.638051 |
| 4 |                     |            |          | 1.803773 | 2.626798 | 2.025501 | 0.828509 |
| 5 |                     |            | 1.743963 | 2.770704 | 2.396959 | 1.435558 | 0.409513 |
| 6 |                     | 1.712166   | 2.965756 | 2.779050 | 2.047841 | 0.901760 | 0.207127 |
| 7 | 1.693224            | 3.183504   | 3.169246 | 2.705144 | 1.482934 | 0.561786 | 0.102378 |
| 1 | $0.5~\mathrm{dB}$   | of ripple  |          |          |          |          | 2.862775 |
| 2 | $(\alpha_{\rm p} =$ | = 0.5)     |          |          |          | 1.425625 | 1.516203 |
| 3 | · 1                 |            |          |          | 1.252913 | 1.534895 | 0.715694 |
| 4 |                     |            |          | 1.197386 | 1.716866 | 1.025455 | 0.379051 |
| 5 |                     |            | 1.172491 | 1.937367 | 1.309575 | 0.752518 | 0.178923 |
| 6 |                     | 1.159176   | 2.171845 | 1.589764 | 1.171861 | 0.432367 | 0.094763 |
| 7 | 1.151218            | 2.412651   | 1.869408 | 1.647903 | 0.755651 | 0.282072 | 0.044731 |
| 1 | 1 dB o              | f ripple   |          |          |          |          | 1.965227 |
| 2 | $(\alpha_{\rm p}$   | $=1)^{-1}$ |          |          |          | 1.097734 | 1.102510 |
| 3 | \ P                 | ,          |          |          | 0.988341 | 1.238409 | 0.491307 |
| 4 |                     |            |          | 0.952811 | 1.453925 | 0.742619 | 0.275628 |
| 5 |                     |            | 0.936820 | 1.688816 | 0.974396 | 0.580534 | 0.122827 |
| 6 |                     | 0.928251   | 1.930825 | 1.202140 | 0.939346 | 0.307081 | 0.068907 |
| 7 | 0.923123            | 2.176078   | 1.428794 | 1.357545 | 0.548620 | 0.213671 | 0.030707 |

| - |                   |            |          |          |          |          |          |
|---|-------------------|------------|----------|----------|----------|----------|----------|
| 1 | 2  dB  o          | f ripple   |          |          |          |          | 1.307560 |
| 2 | $(\alpha_{\rm p}$ | = 2)       |          |          |          | 0.803816 | 0.823060 |
| 3 |                   |            |          |          | 0.737822 | 1.022190 | 0.326890 |
| 4 |                   |            |          | 0.716215 | 1.256482 | 0.516798 | 0.205765 |
| 5 |                   |            | 0.706461 | 1.499543 | 0.693477 | 0.459349 | 0.081723 |
| 6 |                   | 0.701226   | 1.745859 | 0.867015 | 0.771462 | 0.210271 | 0.051441 |
| 7 | 0.698091          | 1.993665   | 1.039546 | 1.144597 | 0.382638 | 0.166126 | 0.020431 |
| 1 | 3 dB o            | f ripple   |          |          |          |          | 1.002377 |
| 2 | $(\alpha_{\rm p}$ | $=3)^{-1}$ |          |          |          | 0.644900 | 0.707948 |
| 3 | · 1               | ,          |          |          | 0.597240 | 0.928348 | 0.250594 |
| 4 |                   |            |          | 0.581580 | 1.169118 | 0.404768 | 0.176987 |
| 5 |                   |            | 0.574500 | 1.415025 | 0.548937 | 0.407966 | 0.062649 |
| 6 |                   | 0.570698   | 1.662848 | 0.690610 | 0.699098 | 0.163430 | 0.044247 |
| 7 | 0.568420          | 1.911551   | 0.831441 | 1.051845 | 0.300017 | 0.146153 | 0.015662 |

# **Chapter 3**

# Nyqist sampling rate $\geq$ 2 Bandwidth of the signal





$$h(t) = sinc(t/T) \qquad \hat{x}(t) = \sum_{k=-\infty}^{\infty} x(nT)h(t - nT)$$
$$\hat{x}(t) = \sum_{k=-\infty}^{\infty} x(nT)sinc\left(\frac{t - nT}{2}\right)$$

$$\hat{x}(t) = \sum_{k=-\infty} x(nT) \operatorname{sinc}\left(-\frac{T}{T}\right)$$

$$H(\omega) = T \operatorname{sinc}\left(\frac{\omega T}{2\pi}\right)$$
 zero-order Hold Filter

$$f_{
m a}=\langle f_0+F_{
m s}/2
angle_{F_{
m s}}-F_{
m s}/2$$
 apparent frequency

# Sampling Bandpass Signal

$$KF_{s} < 2f_{1} \quad \text{and} \quad (K+1)F_{s} > 2f_{2}$$

$$K_{\max} = \left\lfloor \frac{f_{2}}{B} \right\rfloor - 1$$

$$\frac{2}{K+1} \left( \frac{f_{2}}{B} \right) < \frac{F_{s}}{B} < \frac{2}{K} \left( \frac{f_{2}}{B} - 1 \right)$$

$$\frac{2f_{2}}{K+1} < F_{s} < \frac{2f_{1}}{K}$$

# The spectral Sampling Theorem

The spectral sampling theorem states that the spectrum  $X(\omega)$  of a signal x(t) time limited to a duration of  $T_o$  seconds can be reconstructed from the samples of  $X(\omega)$  taken at a rate R samples/Hz, where  $R \ge T_o$  (the signal width or duration) is in seconds. The frequency resolution  $f_o = 1/T_o$ .

# Analog to Digital Conversion

$$\Delta = 2 V_{ref} / L \qquad \qquad L = 2^B$$

Quantization error =  $\Delta/2$ 

Energy of Quantization error  $E_{\rm q} = \frac{V_{\rm ref}^2/3}{4^B} \label{eq:Eq}$ 

Rounding Asymmetric:  $x_{\rm q} = \frac{V_{\rm ref}}{2^{B-1}} \left\lfloor \frac{x}{V_{\rm ref}} 2^{B-1} + \frac{1}{2} \right\rfloor$ 

$$x_{\mathrm{q}} = \frac{V_{\mathrm{ref}}}{2^{B-1}} \left\lfloor \frac{x}{V_{\mathrm{ref}}} 2^{B-1} \right\rfloor$$

**Truncating Asymmetric** 

Rounding Symmetric: 
$$x_{\rm q} = \frac{V_{\rm ref}}{2^{B-1}} \left( \left\lfloor \frac{x}{V_{\rm ref}} 2^{B-1} \right\rfloor + \frac{1}{2} \right)$$

 $x_{\rm q} = \frac{V_{\rm ref}}{2^{B-1}} \left( \left\lfloor \frac{x}{V_{\rm ref}} 2^{B-1} - \frac{1}{2} \right\rfloor + \frac{1}{2} \right)$  Truncating Symmetric:

Two's Complement

 $x_{q} = V_{ref} \left( -c_{B-1}2^{0} + c_{B-2}2^{-1} + \dots + c_{1}2^{-(B-2)} + c_{0}2^{-(B-1)} \right)$ 

**Offset Binary** 

$$x_{q} = V_{ref} \left( -1 + c_{B-1} 2^{0} + c_{B-2} 2^{-1} + \dots + c_{1} 2^{-(B-2)} + c_{0} 2^{-(B-1)} \right)$$

µ-law Compression

$$x_{\mu} = \frac{V_{\text{ref}} \operatorname{sgn}(x)}{\ln(1+\mu)} \ln(1+\mu|x|/V_{\text{ref}})$$

**Chapter 4** 

$$x[n]\delta[n-m] = x[m]\delta[n-m]$$
$$u[n] = \sum_{m=-\infty}^{n} \delta[m]$$

$$\delta[n] = u[n] - u[n-1]$$

$$x[n] = \sum_{m=-\infty}^{\infty} x[m]\delta[n-m]$$
 Sampling

 $e^{st} \rightarrow e^{snT} = e^{(\sigma+j\omega)Tn} = e^{\sigma Tn} e^{j\omega Tn} = (e^{\sigma T})^n (e^{j\omega T})^n = |z|^n e^{j\Omega n}$ 

apparent frequencies due to aliasing

$$\Omega_{\mathrm{a}} = \langle \Omega + \pi \rangle_{2\pi} - \pi$$
  
Cos( $\Omega n$ ) = cos([ $\Omega$ +2 $\pi$ k] $n$ )

$$x[n] = \underbrace{\frac{x[n] + x^*[n]}{2}}_{\text{Re}\{x[n]\}} + j \underbrace{\left(\frac{x[n] - x^*[n]}{2j}\right)}_{\text{Im}\{x[n]\}}$$
$$x[n] = \underbrace{\frac{x[n] + x[-n]}{2}}_{x_e[n]} + \underbrace{\frac{x[n] - x[-n]}{2}}_{x_o[n]}$$
$$x[n] = \underbrace{\frac{x[n] + x^*[-n]}{2}}_{x_{cs}[n]} + \underbrace{\frac{x[n] - x^*[-n]}{2}}_{x_{ca}[n]}$$

Fundamental period N<sub>o</sub>

$$\cos\left(\Omega n\right) = \cos\left(2\pi \frac{f}{F_s}n\right) = \cos\left(2\pi \frac{m}{N_o}n\right)$$

m = number of cycles in one fundamental period  $N_{o}$ 

$$E_x = \sum_{n=-\infty}^{\infty} |x[n]|^2 \qquad x[n] \to 0 \text{ as } |n| \to \infty$$

$$P_{x} = \lim_{N \to \infty} \frac{1}{2N+1} \sum_{n=-N}^{N} |x[n]|^{2}$$
$$\frac{d^{K}}{dt^{K}} y(t) \Big|_{t=nT} \approx \frac{1}{T^{K}} \sum_{k=0}^{K} (-1)^{k} {K \choose k} y[n-k].$$

 $a_0y[n+K] + a_1y[n+K-1] + \dots + a_{K-1}y[n+1] + a_Ky[n] = b_0x[n+L] + b_1x[n+L-1] + \dots + b_{L-1}x[n+1] + b_Lx[n]$ 

$$\sum_{k=0}^{K} a_k y[n+K-k] = \sum_{l=0}^{L} b_l x[n+L-l]$$

$$\underbrace{y[n]}_{\text{output}} = \underbrace{\sum_{m=-\infty}^{\infty} x[m]}_{\text{sum}} \underbrace{h[n-m]}_{\text{shifted}}_{\text{impulse}}$$

$$\underbrace{h[n-m]}_{\text{responses}}$$

$$\begin{array}{c} x[n] \\ F_{\rm s} \end{array} \longrightarrow \begin{array}{c} x_{\downarrow}[n] \\ F_{\rm s}/M \end{array} \qquad \begin{array}{c} x[n] \\ F_{\rm s} \end{array} \longrightarrow \begin{array}{c} H_{\rm d} \end{array} \begin{array}{c} \hat{x} \\ F_{\rm s} \end{array}$$



| $E\{x[n]\} \equiv x[n+1]$      | $E^2\{x[n]\} \equiv x[n+2]$    |
|--------------------------------|--------------------------------|
| $E^{-1}\{x[n]\} \equiv x[n-1]$ | $E^{-2}\{x[n]\} \equiv x[n-2]$ |

## **Zero Input Response**

 $y[n+K] + a_1 y[n+K-1] + \dots + a_{K-1} y[n+1] + a_K y[n] = 0$ ( $\gamma^K + a_1 \gamma^{K-1} + \dots + a_{K-1} \gamma + a_K$ ) =  $A(\gamma) = 0$ ( $\gamma - \gamma_1$ )( $\gamma - \gamma_2$ )  $\dots$  ( $\gamma - \gamma_K$ ) =  $A(\gamma) = 0$  $y[n] = c_1 \gamma_1^n + c_2 \gamma_2^n + \dots + c_K \gamma_K^n$ 

If two roots are equal then  $y[n] = c_1 \gamma^n + c_2 \gamma^n$ 

For complex roots  $\gamma = |\gamma|e^{j\beta}$  and  $\gamma^* = |\gamma|e^{-j\beta}$ 

$$y[n] = \frac{c}{2} |\gamma|^n \left( e^{j(\beta n + \theta)} + e^{-j(\beta n + \theta)} \right)$$
$$= c |\gamma|^n \cos(\beta n + \theta)$$

The unit impulse response h[n]

$$y[n+K] + a_1 y[n+(K-1)] + \dots + a_{K-1} y[n+1] + a_K y[n] = b_0 x[n+K] + b_1 x[n+(K-1)] + \dots + b_{K-1} x[n+1] + b_K x[n]$$

$$h[n] = \frac{b_K}{a_K} \delta[n] + y_{\rm c}[n] u[n]$$

When there are R zero roots then

$$h[n] = A_0 \delta[n] + A_1 \delta[n-1] + \dots + A_R \delta[n-|R] + y_c[n] u[n]$$

Convolution

$$y[n] = x[n] * h[n] = \sum_{m=-\infty}^{\infty} x[m]h[n-m]$$
1.  $\sum_{m=p}^{n} r^m = \frac{r^p - r^{n+1}}{1 - r}$   $r \neq 1$ 

2. 
$$\sum_{m=0}^{n} m^{2} = \frac{2}{2}$$
  
3.  $\sum_{m=0}^{n} m^{2} = \frac{n(n+1)(2n+1)}{6}$   
4.  $\sum_{m=0}^{n} mr^{m} = \frac{r+[n(r-1)-1]r^{n+1}}{(r-1)^{2}} \qquad r \neq 1$   
5.  $\sum_{m=0}^{n} m^{2}r^{m} = \frac{r[(1+r)(1-r^{n})-2n(1-r)r^{n}-n^{2}(1-r)^{2}r^{n}]}{(r-1)^{3}} \qquad r \neq 1$ 

x[n] \* h[n] = h[n] \* x[n]  $x[n] * (h_1[n] + h_2[n]) = x[n] * h_1[n] + x[n] * h_2[n]$   $x[n] * (h_1[n] * h_2[n]) = (x[n] * h_1[n]) * h_2[n]$ if x[n] \* h[n] = y[n] then x[n-m] \* h[n-p] = y[n-m-p] $x[n] * \delta[n] = x[n]$  if x[n] has width  $W_x$  (length  $L_x$ ) and h[n] has width  $W_h$ (length  $L_h$ ) then the width of the convolution y[n]=x[n] \* h[n] is  $W_y = W_x + W_h$  (length  $L_y = L_x + L_h - 1$ )



Finding H(z) from the difference equation

$$A(E) \{y[n]\} = B(E) \{x[n]\}$$
$$H(z) = \frac{B(z)}{A(z)}$$

Finding  $H(j\Omega)$  from H(z) by replacing z with  $e^{j\Omega}$ 

$$H(e^{j\Omega}) = \sum_{m=-\infty}^{\infty} h[m]e^{-j\Omega m}$$

Total Response can be expressed as

$$y[n] = \underbrace{[-1.26(4)^{-n} + 0.444(-0.2)^{n} + 5.82(0.8)^{n}] u[n]}_{\text{zero-state response}} + \underbrace{0.2(-0.2)^{n} + 0.8(0.8)^{n}}_{\text{zero-input response}}$$
$$y[n] = \underbrace{-1.26(4)^{-n}}_{\text{forced response}} + \underbrace{0.644(-0.2)^{n} + 6.62(0.8)^{n}}_{\text{natural response}}$$

## System Stability

1. A causal LTID system is asymptotically stable if and only if all the characteristic roots are inside the unit circle. The roots may be simple or repeated.

- 2. A causal LTID system is marginally stable if and only if there are no roots outside the unit circle, and there are non-repeated roots on the unit circle.
- 3. A causal LTID system is unstable if and only if at least one root is outside the unit circle or there are repeated roots on the unit circle or both.

$$\sum_{n=-\infty}^{\text{DTFT}} x[n] e^{-j\Omega n}$$

IDFT 
$$x[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(\Omega) e^{j\Omega n} d\Omega$$
  
 $x[n] \longrightarrow h[n] \longrightarrow y[n] = x[n] * h[n]$   
 $H(\Omega) \longrightarrow Y(\Omega) = X(\Omega)H(\Omega)$   
 $e^{j\Omega_0 n} \qquad H(\Omega_0) e^{j\Omega_0 n}$   
 $E_x = \sum_{n=1}^{\infty} |x[n]|^2 = \frac{1}{2\pi} \int_{-\pi}^{\pi} |X(\Omega)|^2 d\Omega$ 

$$E_x = \sum_{n = -\infty}^{\infty} |x[n]|^2 = \frac{1}{2\pi} \int_{2\pi} |X(\Omega)|^2 \, d\Omega$$

# Distortionless Transmission in Bandpass Systems



Group delay

$$n_{\mathbf{g}}(\Omega) = -\frac{d}{d\Omega} \angle H(\Omega)$$

Modulation

$$x[n]\cos(\Omega_0 n) \iff \frac{1}{2} \left[ X(\Omega - \Omega_0) + X(\Omega + \Omega_0) \right]$$

Connection between DTFT  $X(\Omega)$  and CTFT  $X_c(\omega)$ 

$$X(\Omega) = \frac{1}{T} \sum_{k=-\infty}^{\infty} X_c \left( \frac{\Omega - 2\pi k}{T} \right)$$

Connection between downsampled DTFT  $X_{\downarrow}(\Omega)$  by a factor *M* and CTFT  $X_{c}(\omega)$ 

$$X_{\downarrow}(\Omega) = \frac{1}{TM} \sum_{k=-\infty}^{\infty} X_c \left( \frac{\Omega - 2\pi k}{TM} \right)$$

Connection between downsampled DTFT  $X_{\downarrow}(\Omega)$  by a factor *M* and the original DTFT  $X(\Omega)$ 

$$X_{\rm d}(\Omega) = \frac{1}{M} \sum_{m=0}^{M-1} X\left(\frac{\Omega - 2\pi m}{M}\right) H_{\rm d}\left(\frac{\Omega - 2\pi m}{M}\right)$$

Connection between upsampling DTFT  $X_{\uparrow}(\Omega)$  by a factor *L* and the original DTFT  $X(\Omega)$ 

$$X_{\uparrow}(\Omega) = X(L\Omega)$$

Connection between upsampling and ideal interpolated DTFT  $X_i(\Omega)$  by a factor *L* and the original CTFT  $X_c(\omega)$ 

$$X_i(\Omega) = \frac{L}{T} \sum_{k=-\infty}^{\infty} X_c \left( \frac{L[\Omega - 2\pi k]}{T} \right)$$

Connection between upsampling and interpolated DTFT  $X_i(\Omega)$  by a factor L and the original DTFT  $X(\Omega)$ 

$$\begin{array}{c} x[n] \\ X(\Omega) \end{array} \longrightarrow \begin{array}{c} \uparrow L \\ X_{\uparrow}(\Omega) \end{array} \begin{array}{c} H_{i} \\ H_{i} \\ X_{i}(\Omega) \end{array} \begin{array}{c} x_{i}[n] \\ X_{i}(\Omega) \end{array}$$

Interpolation

$$X_{\mathbf{i}}(\Omega) = X_{\uparrow}(\Omega)H_{\mathbf{i}}(\Omega)$$

$$x_{\mathbf{i}}[n] = \sum_{k=-\infty}^{\infty} x[k]h_{\mathbf{i}}[n-kL]$$

Fractional Sampling Rate Conversion

$$\begin{array}{c} x[n] \\ F_{\rm s} \end{array} & \textcircled{\uparrow} L \\ LF_{\rm s} \end{array} & \overbrace{LF_{\rm s}} \\ H_{\rm l} \\ \hline \end{array} & H_{\rm d} \\ \hline \begin{array}{c} H_{\rm d} \\ LF_{\rm s} \end{array} & \overbrace{LF_{\rm s}} \\ M \\ \hline \end{array} & \overbrace{LF_{\rm s}} \\ M \\ \hline \end{array}$$
 (a)

- Upsampling by *L* followed by downsampling by *M* changes the overall sampling rate by a fractional amount *L/M*.
- The two lowpass filters H<sub>i</sub> and H<sub>d</sub>, being in cascade, can be replaced by a single lowpass filter of cutoff frequency π/L or π/M, whichever is lower.
- Preferable to do upsampling prior to downsampling to avoid loss of information.

The z-transform

$$X(z) = \sum_{n=-\infty}^{\infty} x[n] z^{-n}$$

The transfer function H(z)

$$y[n+K] + a_1 y[n + (K-1)] + \dots + a_{K-1} y[n+1] + a_K y[n] = b_0 x[n+K] + b_1 x[n + (K-1)] + \dots + b_{K-1} x[n+1] + b_K x[n]$$

$$H(z) = \frac{Y(z)}{X(z)} = \frac{B(z)}{A(z)} = \frac{b_0 z^K + b_1 z^{K-1} + \dots + b_{K-1} z + b_K}{z^K + a_1 z^{K-1} + \dots + a_{K-1} z + a_K}$$
$$H(z) = \frac{Y(z)}{X(z)} = \frac{\mathcal{Z} \{\text{zero-state response}\}}{\mathcal{Z} \{\text{input}\}}$$

System Stability

- A causal LTID system is asymptotically stable if and only if all the characteristic roots are inside the unit circle. The roots may be simple or repeated.
- A causal LTID system is marginally stable if and only if there are no roots outside the unit circle and there are non-repeated roots on the unit circle.
- A causal LTID system is unstable if and only if at least one root is outside the unit circle, there are repeated roots on the unit circle, or both.

System Block





Frequency Response from Pole-zero locations

$$H(e^{j\Omega})| = |b_0| \frac{r_1 r_2 \cdots r_K}{d_1 d_2 \cdots d_K} = |b_0| \frac{\prod_{l=1}^K r_l}{\prod_{k=1}^K d_k}$$
$$= |b_0| \frac{\text{product of the distances of zeros to } e^{j\Omega}}{\text{product of the distances of poles to } e^{j\Omega}},$$

$$\angle H(e^{j\Omega}) = \angle b_0 + (\phi_1 + \phi_2 + \dots + \phi_K) - (\theta_1 + \theta_2 + \dots + \theta_K) = \angle b_0 + \sum_{l=1}^K \phi_l - \sum_{k=1}^K \theta_k$$
  
=  $\angle b_0$  + sum of zero angles to  $e^{j\Omega}$  – sum of pole angles to  $e^{j\Omega}$ 



$$X[k] = \sum_{n=0}^{N-1} x[n] e^{-j\Omega_0 kn} \quad 0 \le k \le N-1 \qquad x[n] = \frac{1}{N} \sum_{k=0}^{N-1} X[k] e^{j\Omega_0 kn} \quad 0 \le n \le N-1$$

$$\Omega_{0} = \omega_{0}T = 2\pi f_{0}T = \frac{2\pi f_{0}}{f_{s}} = \frac{2\pi}{N}$$

$$\int_{0}^{f_{0}} \frac{1}{T_{0}} \int_{0}^{f_{0}} \frac{1}{T_{0}} \int_{0}^{$$

$$X(\Omega) = \frac{1}{N} \sum_{k=0}^{N-1} X[k] \frac{\sin\left(\frac{\Omega N - 2\pi k}{2}\right)}{\sin\left(\frac{\Omega N - 2\pi k}{2N}\right)} e^{-j(\Omega N - 2\pi k)(N-1)/2N}$$
  
if  $x[n] \longleftrightarrow X[k]$ , then  $x[\langle -n \rangle_N] \longleftrightarrow X[\langle -k \rangle_N] = X[N-k]$   
if  $x[n] \longleftrightarrow X[k]$ , then  
 $x[\langle n-m \rangle_N] \longleftrightarrow X[k]e^{-j\Omega_0 km}$ 



|     | x[n]                                                                      | X(z)                                                                                                  | ROC                                                          |
|-----|---------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|
| 1.  | $\delta[n]$                                                               | 1                                                                                                     | All z                                                        |
| 2.  | u[n]                                                                      | $\frac{z}{z-1}$                                                                                       | z  > 1                                                       |
| 3.  | $\gamma^n u[n]$                                                           | $\frac{z}{z-\gamma}$                                                                                  | $ z  >  \gamma $                                             |
| 4.  | $\gamma^{n-1}u[n-1]$                                                      | $\frac{1}{z-\gamma}$                                                                                  | $ z  >  \gamma $                                             |
| 5.  | $n\gamma^n u[n]$                                                          | $rac{\gamma z}{(z-\gamma)^2}$                                                                        | $ z  >  \gamma $                                             |
| 6.  | $n^2\gamma^n u[n]$                                                        | $rac{\gamma z(z+\gamma)}{(z-\gamma)^3}$                                                              | $ z  >  \gamma $                                             |
| 7.  | $\frac{n!}{(n-m)!m!}\gamma^{n-m}u[n]$                                     | $\frac{z}{(z-\gamma)^{m+1}}$                                                                          | $ z  >  \gamma $                                             |
| 8.  | $ \gamma ^n \cos(\beta n) u[n]$                                           | $\frac{z[z- \gamma \cos(\beta)]}{z^2-2 \gamma \cos(\beta)z+ \gamma ^2}$                               | $ z  >  \gamma $                                             |
| 9.  | $ \gamma ^n \sin(\beta n) u[n]$                                           | $\frac{z \gamma \sin(\beta)}{z^2-2 \gamma \cos(\beta)z+ \gamma ^2}$                                   | $ z  >  \gamma $                                             |
| 10. | $ \gamma ^n \cos(\beta n + \theta) u[n]$                                  | $\frac{z[z\cos(\theta) -  \gamma \cos(\beta - \theta)]}{z^2 - 2 \gamma \cos(\beta)z +  \gamma ^2}$    | $ z  >  \gamma $                                             |
|     |                                                                           | $= \frac{(0.5e^{j\theta})z}{z- \gamma e^{j\beta}} + \frac{(0.5e^{-j\theta})z}{z- \gamma e^{-j\beta}}$ |                                                              |
| 11. | $r \gamma ^n \cos(\beta n + \theta)u[n]$                                  | $rac{z(az+b)}{z^2+2cz+ \gamma ^2}$                                                                   | $ z  >  \gamma $                                             |
|     | $r = \sqrt{\frac{a^2 \gamma ^2 + b^2 - 2abc}{ \gamma ^2 - c^2}}$          |                                                                                                       |                                                              |
|     | $\beta = \cos^{-1} \left( \frac{-c}{ \gamma } \right)$                    |                                                                                                       |                                                              |
|     | $\theta = \tan^{-1} \left( \frac{ac-b}{a\sqrt{ \gamma ^2 - c^2}} \right)$ |                                                                                                       |                                                              |
| 12. | $\delta[n-k]$                                                             | $z^{-k}$                                                                                              | $egin{array}{ccc}  z >0 & k>0\  z <\infty & k<0 \end{array}$ |
| 13. | -u[-n-1]                                                                  | $\frac{z}{z-1}$                                                                                       | z  < 1                                                       |
| 14. | $-\gamma^n u[-n-1]$                                                       | $\frac{z}{z-\gamma}$                                                                                  | $ z  <  \gamma $                                             |
| 15. | $-n\gamma^n u[-n-1]$                                                      | $rac{z\gamma}{(z-\gamma)^2}$                                                                         | $ z  <  \gamma $                                             |

| Bilateral <i>z</i> -Transform                                                                                                                 | Unilateral <i>z</i> -Transform                                                                                    |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|--|--|--|
| Synthesis:<br>$x[n] = \frac{1}{2\pi j} \oint X(z) z^{n-1} dz$                                                                                 | Synthesis:<br>$x[n] = \frac{1}{2\pi j} \oint X(z) z^{n-1} dz$                                                     |  |  |  |
| Analysis:<br>$X(z) = \sum_{n=-\infty}^{\infty} x[n] z^{-n}$ , ROC: $R_x$                                                                      | Analysis:<br>$X(z) = \sum_{n=0}^{\infty} x[n] z^{-n}$                                                             |  |  |  |
| Linearity:                                                                                                                                    | Linearity:                                                                                                        |  |  |  |
| $\begin{array}{c} ax[n] + by[n] \stackrel{\mathcal{Z}}{\Longleftrightarrow} aX(z) + bY(z), \\ \text{ROC: At least } R_x \cap R_y \end{array}$ | $ax[n] + by[n] \stackrel{\mathcal{Z}_u}{\iff} aX(z) + bY(z)$                                                      |  |  |  |
| Complex Conjugation:                                                                                                                          | Complex Conjugation:                                                                                              |  |  |  |
| $x^*[n] \stackrel{\mathcal{Z}}{\Longleftrightarrow} X^*(z^*), \operatorname{ROC:} R_x$                                                        | $x^*[n] \stackrel{\mathcal{Z}_u}{\Longleftrightarrow} X^*(z^*)$                                                   |  |  |  |
| Time Reversal:                                                                                                                                | Time Reversal:                                                                                                    |  |  |  |
| $x[-n] \stackrel{\mathcal{Z}}{\longleftrightarrow} X(1/z), \text{ROC: } 1/R_x$                                                                |                                                                                                                   |  |  |  |
| Time Shifting:                                                                                                                                | Time Shifting:                                                                                                    |  |  |  |
| $x[n-m] \stackrel{\mathcal{Z}}{\iff} z^{-m}X(z)$ , ROC: Almost $R_x$                                                                          | If $m > 0$ : $x[n-m]u[n-m] \stackrel{\mathbb{Z}_u}{\longleftrightarrow} z^{-m}X(z)$<br>(general case given below) |  |  |  |
| z-Domain Scaling:                                                                                                                             | z-Domain Scaling:                                                                                                 |  |  |  |
| $\gamma^n x[n] \stackrel{\mathcal{Z}}{\longleftrightarrow} X(z/\gamma), \text{ROC: }  \gamma  R_x$                                            | $\gamma^n x[n] \stackrel{\mathcal{Z}_u}{\longleftrightarrow} X(z/\gamma)$                                         |  |  |  |
| z-Domain Differentiation:                                                                                                                     | z-Domain Differentiation:                                                                                         |  |  |  |
| $nx[n] \stackrel{\mathcal{Z}}{\Longleftrightarrow} -z\frac{d}{dz}X(z), $ ROC: $R_x$                                                           | $nx[n] \stackrel{\mathcal{Z}_u}{\Longleftrightarrow} -z \frac{d}{dz} X(z)$                                        |  |  |  |
| Time Convolution:                                                                                                                             | Time Convolution:                                                                                                 |  |  |  |
| $x[n] * y[n] \iff X(z)Y(z), $ ROC: At least $R_x \cap R_y$                                                                                    | $x[n] * y[n] \stackrel{\mathcal{Z}_u}{\longleftrightarrow} X(z)Y(z)$                                              |  |  |  |
| Unilateral z-Transform Time Shifting, General Case                                                                                            |                                                                                                                   |  |  |  |

If m > 0:  $x[n-m]u[n] \stackrel{Z_u}{\iff} z^{-m}X(z) + z^{-m}\sum_{n=1}^m x[-n]z^n$ If m < 0:  $x[n-m]u[n] \stackrel{Z_u}{\iff} z^{-m}X(z) - z^{-m}\sum_{n=0}^{-m-1} x[n]z^{-n}$ 

|     | x[n]                | h[n]                                       | x[n] * h[n]                                                                                                                                                              |
|-----|---------------------|--------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1.  | x[n]                | $\delta[n-k]$                              | x[n-k]                                                                                                                                                                   |
| 2.  | u[n]                | u[n]                                       | (n+1)u[n]                                                                                                                                                                |
| 3.  | u[n]                | n  u[n]                                    | $\frac{n(n+1)}{2}u[n]$                                                                                                                                                   |
| 4.  | nu[n]               | nu[n]                                      | $\frac{n(n-1)(n+1)}{6}u[n]$                                                                                                                                              |
| 5.  | u[n]                | $\gamma^n u[n]$                            | $\left(\frac{1-\gamma^{n+1}}{1-\gamma}\right)u[n]$                                                                                                                       |
| 6.  | nu[n]               | $\gamma^n u[n]$                            | $\left(\frac{\gamma(\gamma^n-1)+n(1-\gamma)}{(1-\gamma)^2}\right)u[n]$                                                                                                   |
| 7.  | $\gamma^n u[n]$     | $\gamma^n u[n]$                            | $(n+1)\gamma^n u[n]$                                                                                                                                                     |
| 8.  | $\gamma_1^n u[n]$   | $\gamma_2^n u[n]$                          | $\left(\frac{\gamma_1^{n+1} - \gamma_2^{n+1}}{\gamma_1 - \gamma_2}\right) u[n] \qquad \gamma_1 \neq \gamma_2$                                                            |
| 9.  | $\gamma_1^n u[n]$   | $n\gamma_2^n u[n]$                         | $\frac{\gamma_1\gamma_2}{(\gamma_1-\gamma_2)^2} \left(\gamma_1^n + \frac{\gamma_2-\gamma_1}{\gamma_1}n\gamma_2^n - \gamma_2^n\right) u[n] \qquad \gamma_1 \neq \gamma_2$ |
| 10. | $\gamma_1^n u[n]$   | $\gamma_2^n u[-n-1]$                       | $\frac{\gamma_1}{\gamma_2 - \gamma_1} \gamma_1^n u[n] + \frac{\gamma_2}{\gamma_2 - \gamma_1} \gamma_2^n u[-n-1] \qquad  \gamma_2  >  \gamma_1 $                          |
| 11. | $ \gamma_1 ^n u[n]$ | $ \gamma_2 ^n \cos(\beta n + \theta) u[n]$ | $\frac{1}{R} \left[  \gamma_2 ^{n+1} \cos[\beta(n+1) + \theta - \phi] -  \gamma_1 ^{n+1} \cos(\theta - \phi) \right] u[n]$                                               |
|     |                     |                                            | $R = \sqrt{ \gamma_1 ^2 - 2 \gamma_1  \gamma_2 \cos(\beta) +  \gamma_2 ^2}$                                                                                              |
|     |                     |                                            | $\phi = \tan^{-1} \left[ \frac{ \gamma_2 \sin(\beta)}{ \gamma_2 \cos(\beta) -  \gamma_1 } \right]$                                                                       |

#### Fourier Transform

Synthesis:  $x[n] = \frac{1}{2\pi} \int_{2\pi} X(\Omega) e^{j\Omega n} \, d\Omega$ Analysis:  $X(\Omega) = \sum_{n=-\infty}^{\infty} x[n]e^{-j\Omega n}$ Duality: Linearity:  $ax[n] + by[n] \iff aX(\Omega) + bY(\Omega)$ Complex Conjugation:  $x^*[n] \iff X^*(-\Omega)$ Scaling and Reversal: (see Sec. 6.6)  $x[-n] \iff X(-\Omega)$ Shifting:  $\begin{array}{c} x[n-m] \Longleftrightarrow X(\Omega) e^{-j\Omega m} \\ x[n] e^{j\Omega_0 n} \Longleftrightarrow X(\Omega - \Omega_0) \end{array}$ Differentiation:  $-jnx[n] \iff \frac{d}{d\Omega}X(\Omega)$ 

**Discrete-Time Fourier Transform** 

Time Integration:

 $\begin{array}{c|c} \mathbf{Convolution:} \\ x[n] * y[n] \Longleftrightarrow X(\Omega)Y(\Omega) \\ x[n]y[n] \Longleftrightarrow \frac{1}{2\pi}X(\Omega) \circledast Y(\Omega) \\ \mathbf{Correlation:} \\ \rho_{x,y}[l] = x[l] * y^*[-l] \Longleftrightarrow X(\Omega)Y^*(\Omega) \\ \mathbf{Parseval's:} \\ E_x = \sum_{n=-\infty}^{\infty} |x[n]|^2 = \frac{1}{2\pi} \int_{2\pi} |X(\Omega)|^2 d\Omega \\ \end{array} \qquad E_x = \sum_{n=-\infty}^{\infty} |x[n]|^2 = \frac{1}{2\pi} \int_{2\pi} |X(\Omega)|^2 d\Omega \\ \end{array}$ 

Synthesis:  $x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(\omega) e^{j\omega t} d\omega$ Analysis:  $X(\omega) = \int_{-\infty}^{\infty} x(t) e^{-j\omega t} dt$ Duality: if  $x(t) \iff X(\omega)$ , then  $X(t) \iff 2\pi x(-\omega)$ Linearity:  $ax(t) + by(t) \iff aX(\omega) + bY(\omega)$ Complex Conjugation:  $x^*(t) \iff X^*(-\omega)$ Scaling and Reversal:  $x(at) \iff \frac{1}{|a|} X\left(\frac{\omega}{a}\right)$  $x(-t) \Longleftrightarrow X(-\omega)$ Shifting:  $\begin{array}{c} x(t-t_0) \Longleftrightarrow X(\omega) e^{-j\omega t_0} \\ x(t) e^{j\omega_0 t} \Longleftrightarrow X(\omega-\omega_0) \end{array}$ Differentiation:  $\frac{d}{dt}x(t) \iff j\omega X(\omega)$  $-jtx(t) \iff \frac{d}{d\omega}X(\omega)$ Time Integration:  $\int_{-\infty}^{t} x(\tau) d\tau \iff \frac{X(\omega)}{j\omega} + \pi X(0) \delta(\omega)$ Convolution:  $\begin{array}{c} x(t)*y(t) \Longleftrightarrow X(\omega)Y(\omega) \\ x(t)y(t) \Longleftrightarrow \frac{1}{2\pi}X(\omega)*Y(\omega) \end{array}$ Correlation:  $\rho_{x,y}(\tau) = x(\tau) * y^*(-\tau) \Longleftrightarrow X(\omega)Y^*(\omega)$  $\begin{array}{c} \mathbf{Parseval's:}\\ E_x = \int_{-\infty}^\infty |x(t)|^2\,dt = \frac{1}{2\pi}\int_{-\infty}^\infty |X(\omega)|^2\,d\omega \end{array}$ 

|     | x(t)                                                        | $X(\omega)$                                                                                                                    |                                               |
|-----|-------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|
| 1.  | $e^{\lambda t}u(t)$                                         | $\frac{1}{j\omega - \lambda}$                                                                                                  | $\operatorname{Re}\left\{\lambda\right\} < 0$ |
| 2.  | $e^{\lambda t}u(-t)$                                        | $-\frac{1}{j\omega-\lambda}$                                                                                                   | $\operatorname{Re}\left\{\lambda\right\}>0$   |
| 3.  | $e^{\lambda t }$                                            | $\frac{-2\lambda}{\omega^2 + \lambda^2}$                                                                                       | $\operatorname{Re}\left\{\lambda\right\}<0$   |
| 4.  | $t^k e^{\lambda t} u(t)$                                    | $\frac{k!}{(j\omega-\lambda)^{k+1}}$                                                                                           | $\operatorname{Re}\left\{\lambda\right\}<0$   |
| 5.  | $e^{-at}\cos(\omega_0 t)u(t)$                               | $\frac{a+j\omega}{(a+j\omega)^2+\omega_0^2}$                                                                                   | a > 0                                         |
| 6.  | $e^{-at}\sin(\omega_0 t)u(t)$                               | $\frac{\omega_0}{(a+j\omega)^2+\omega_0^2}$                                                                                    | a > 0                                         |
| 7.  | $\Pi\left(\frac{t}{\tau}\right)$                            | $	au \mathrm{sinc}\left(rac{	au \omega}{2\pi} ight)$                                                                          | $\tau > 0$                                    |
| 8.  | $\frac{B}{\pi}$ sinc $\left(\frac{Bt}{\pi}\right)$          | $\Pi\left(\frac{\omega}{2B}\right)$                                                                                            | B > 0                                         |
| 9.  | $\Lambda\left(\frac{t}{	au} ight)$                          | $\frac{\tau}{2}\mathrm{sinc}^2\left(\frac{\tau\omega}{4\pi}\right)$                                                            | $\tau > 0$                                    |
| 10. | $\frac{B}{2\pi}\mathrm{sinc}^2\left(\frac{Bt}{2\pi}\right)$ | $\Lambda\left(\frac{\omega}{2B}\right)$                                                                                        | B > 0                                         |
| 11. | $e^{-t^2/2\sigma^2}$                                        | $\sigma\sqrt{2\pi}e^{-\sigma^2\omega^2/2}$                                                                                     | $\sigma > 0$                                  |
| 12. | $\delta(t)$                                                 | 1                                                                                                                              |                                               |
| 13. | 1                                                           | $2\pi\delta(\omega)$                                                                                                           |                                               |
| 14. | u(t)                                                        | $\pi\delta(\omega) + \frac{1}{j\omega}$                                                                                        |                                               |
| 15. | $\operatorname{sgn}(t)$                                     | $\frac{2}{j\omega}$                                                                                                            |                                               |
| 16. | $e^{j\omega_0 t}$                                           | $2\pi\delta(\omega-\omega_0)$                                                                                                  |                                               |
| 17. | $\cos(\omega_0 t)$                                          | $\pi \left[ \delta(\omega - \omega_0) + \delta(\omega + \omega_0) \right]$                                                     |                                               |
| 18. | $\sin(\omega_0 t)$                                          | $\frac{\pi}{j} \left[ \delta(\omega - \omega_0) - \delta(\omega + \omega_0) \right]$                                           |                                               |
| 19. | $\cos(\omega_0 t)u(t)$                                      | $\frac{\pi}{2} \left[ \delta(\omega - \omega_0) + \delta(\omega + \omega_0) \right] + \frac{j\omega}{\omega_0^2 - \omega^2}$   |                                               |
| 20. | $\sin(\omega_0 t)u(t)$                                      | $\frac{\pi}{2j} \left[ \delta(\omega - \omega_0) - \delta(\omega + \omega_0) \right] + \frac{\omega_0}{\omega_0^2 - \omega^2}$ |                                               |
| 21. | $\sum_{k=-\infty}^{\infty} \delta(t - kT)$                  | $\omega_0 \sum_{k=-\infty}^{\infty} \delta(\omega - k\omega_0)$                                                                | $\omega_0 = \frac{2\pi}{T}$                   |

|     | x[n]                                                              | $X(\Omega)$ for $-\pi \leq \Omega < \pi$                                                                                                                             |                    |
|-----|-------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|
| 1.  | $\delta[n-k]$                                                     | $e^{-jk\Omega}$                                                                                                                                                      | Integer $k$        |
| 2.  | $\gamma^n u[n]$                                                   | $\frac{e^{j\Omega}}{e^{j\Omega}-\gamma}$                                                                                                                             | $ \gamma  < 1$     |
| 3.  | $-\gamma^n u[-n-1]$                                               | $\frac{e^{j\Omega}}{e^{j\Omega}-\gamma}$                                                                                                                             | $ \gamma  > 1$     |
| 4.  | $\gamma^{ n }$                                                    | $\frac{1\!-\!\gamma^2}{1\!-\!2\gamma\cos(\Omega)\!+\!\gamma^2}$                                                                                                      | $ \gamma  < 1$     |
| 5.  | $n\gamma^n u[n]$                                                  | $rac{\gamma e^{j\Omega}}{(e^{j\Omega}-\gamma)^2}$                                                                                                                   | $ \gamma  < 1$     |
| 6.  | $ \gamma ^n \! \cos(\Omega_0 n \! + \! \theta) u[n]$              | $\frac{e^{j\Omega}[e^{j\Omega}\cos(\theta)- \gamma \cos(\Omega_0-\theta)]}{e^{j2\Omega}-2 \gamma \cos(\Omega_0)e^{j\Omega}+ \gamma ^2}$                              | $ \gamma  < 1$     |
| 7.  | $u[n] - u[n - L_x]$                                               | $\frac{\sin(L_x\Omega/2)}{\sin(\Omega/2)} e^{-j\Omega(L_x-1)/2}$                                                                                                     |                    |
| 8.  | $\frac{B}{\pi}\operatorname{sinc}\left(\frac{Bn}{\pi}\right)$     | $\Pi(\frac{\Omega}{2B})$                                                                                                                                             | $0 < B \leq \pi$   |
| 9.  | $\frac{B}{2\pi}\operatorname{sinc}^2\left(\frac{Bn}{2\pi}\right)$ | $\Lambdaig({\Omega\over 2B}ig)$                                                                                                                                      | $0 < B \leq \pi$   |
| 10. | 1                                                                 | $2\pi\delta(\Omega)$                                                                                                                                                 |                    |
| 11. | u[n]                                                              | $\frac{e^{j\Omega}}{e^{j\Omega}-1} + \pi\delta(\Omega)$                                                                                                              |                    |
| 12. | $e^{j\Omega_0 n}$                                                 | $2\pi\delta(\Omega-\Omega_0)$                                                                                                                                        | $ \Omega_0  < \pi$ |
| 13. | $\cos(\Omega_0 n)$                                                | $\pi \left[ \delta(\Omega \!-\! \Omega_0) + \delta(\Omega \!+\! \Omega_0) \right]$                                                                                   | $ \Omega_0  < \pi$ |
| 14. | $\sin(\Omega_0 n)$                                                | $\frac{\pi}{j} \left[ \delta(\Omega - \Omega_0) - \delta(\Omega + \Omega_0) \right]$                                                                                 | $ \Omega_0  < \pi$ |
| 15. | $\cos(\Omega_0 n)  u[n]$                                          | $\frac{e^{j2\Omega}-e^{j\Omega}\cos(\Omega_0)}{e^{j2\Omega}-2\cos(\Omega_0)e^{j\Omega}+1}+\frac{\pi}{2}\left[\delta(\Omega-\Omega_0)+\delta(\Omega+\Omega_0)\right]$ | $ \Omega_0  < \pi$ |
| 16. | $\sin(\Omega_0 n)  u[n]$                                          | $\frac{e^{j\Omega}\sin(\Omega_0)}{e^{j2\Omega}-2\cos(\Omega_0)e^{j\Omega}+1}+\frac{\pi}{2j}\left[\delta(\Omega-\Omega_0)-\delta(\Omega+\Omega_0)\right]$             | $ \Omega_0  < \pi$ |

|     | x[n]                                                              | $X(\Omega)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                    |
|-----|-------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|
| 1.  | $\delta[n-k]$                                                     | $e^{-jk\Omega}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\operatorname{Integer} k$                                         |
| 2.  | $\gamma^n u[n]$                                                   | $rac{e^{j\Omega}}{e^{j\Omega}-\gamma}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $ \gamma  < 1$                                                     |
| 3.  | $-\gamma^n u[-n-1]$                                               | $\frac{e^{j\Omega}}{e^{j\Omega}-\gamma}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $ \gamma >1$                                                       |
| 4.  | $\gamma^{ n }$                                                    | $\frac{1\!-\!\gamma^2}{1\!-\!2\gamma\cos(\Omega)\!+\!\gamma^2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $ \gamma  < 1$                                                     |
| 5.  | $n\gamma^n u[n]$                                                  | $rac{\gamma e^{j\Omega}}{(e^{j\Omega}-\gamma)^2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $ \gamma  < 1$                                                     |
| 6.  | $ \gamma ^n \cos(\Omega_0 n + \theta) u[n]$                       | $\frac{e^{j\Omega}[e^{j\Omega}\cos(\theta) -  \gamma \cos(\Omega_0 - \theta)]}{e^{j2\Omega} - 2 \gamma \cos(\Omega_0)e^{j\Omega} +  \gamma ^2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $ \gamma  < 1$                                                     |
| 7.  | $u[n] - u[n - L_x]$                                               | $\frac{\sin(L_x\Omega/2)}{\sin(\Omega/2)} e^{-j\Omega(L_x-1)/2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                    |
| 8.  | $\frac{B}{\pi}\operatorname{sinc}\left(\frac{Bn}{\pi}\right)$     | $\sum_{k=-\infty}^{\infty} \prod \left( \frac{\Omega - 2\pi k}{2B} \right)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                    |
| 9.  | $\frac{B}{2\pi}\operatorname{sinc}^2\left(\frac{Bn}{2\pi}\right)$ | $\sum_{k=-\infty}^{\infty} \Lambda\left(\frac{\Omega - 2\pi k}{2B}\right)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                    |
| 10. | 1                                                                 | $2\pi \sum_{k=-\infty}^{\infty} \delta(\Omega - 2\pi k)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                    |
| 11. | u[n]                                                              | $\frac{e^{j\Omega}}{e^{j\Omega}-1}+\pi\sum_{k=-\infty}^{\infty}\delta(\Omega\!-\!2\pi k)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                    |
| 12. | $e^{j\Omega_0 n}$                                                 | $2\pi \sum_{k=-\infty}^{\infty} \delta(\Omega - \Omega_0 - 2\pi k)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                    |
| 13. | $\cos(\Omega_0 n)$                                                | $\pi \sum_{k=-\infty}^{\infty} \delta(\Omega - \Omega_0 - 2\pi k) + \delta(\Omega + \Omega_0) + \delta(\Omega + \Omega$                                                                                                 | $\Omega_0 - 2\pi k$                                                |
| 14. | $\sin(\Omega_0 n)$                                                | $\frac{\pi}{j}\sum_{k=-\infty}^{\infty}\delta(\Omega-\Omega_0-2\pi k)-\delta(\Omega+2\pi k)-\delta$ | $\Omega_0 - 2\pi k$ )                                              |
| 15. | $\cos(\Omega_0 n)  u[n]$                                          | $\frac{e^{j2\Omega} - e^{j\Omega}\cos(\Omega_0)}{e^{j2\Omega} - 2\cos(\Omega_0)e^{j\Omega} + 1} + \frac{\pi}{2}\sum_{k=-\infty}^{\infty}\delta(\Omega_k)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $2 - \Omega_0 - 2\pi k) + \delta(\Omega + \Omega_0 - 2\pi k)$      |
| 16. | $\sin(\Omega_0 n) u[n]$                                           | $\frac{e^{j\Omega}\sin(\Omega_0)}{e^{j2\Omega}-2\cos(\Omega_0)e^{j\Omega}+1} + \frac{\pi}{2j}\sum_{k=-\infty}^{\infty}\delta(\Omega_0)e^{j\Omega}+1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\Omega - \Omega_0 - 2\pi k) - \delta(\Omega + \Omega_0 - 2\pi k)$ |