HW 11: Ch 9

1) Consider the signal $x[n]=\delta[n]-2 \delta[n-1]+2 \delta[n-2]-\delta[n-3]$.
(a) Compute and plot the 4-point DFT $X[k]$.
(b) Using the fewest number of zeros possible, zero pad $x[n]$ so that the DFT frequency resolution is at least $\Omega_{0}=0.1$. Compute and plot the corresponding DFT Xpad[$\left.k\right]$.
2) The 8-point DFT of a real signal $x[n]$ is known over $0 \leq k \leq 4$ to be $X[k]=1+2 j \delta[k-2]+\delta[k-4]$.
(a) Determine $X[k]$ for $5 \leq k \leq 7$.
(b) Determine and plot the corresponding time-domain signal $x[n]$.
3) Consider a length-4 unit amplitude pulse $x[n]=u[n]-u[n-4]$.
(a) Compute and plot the 4-point DFT $X[k]$ of signal $x[n]$.
(b) Use the DFT interpolation formula to compute the DTFT $X(\Omega)$ from the DFT $X[k]$. Plot $X(\Omega)$.
(c) Sample $X(\Omega)$ over $0 \leq \Omega<2 \pi$ using 10 equally spaced points to create a signal $X_{10}[k]$. Compute and plot the IDFT of $X_{10}[k]$. Comment on your results.
4) This problem investigates zero padding applied in the frequency domain. Plot each N-point DFT as a function of frequency $f_{k}=k / N$.
a) In MATLAB, create a vector x that contains one period of the sinusoid $x[n]=\cos (\pi / 2 n)$. Plot the result. How "sinusoidal" does the signal appear?
b) Using the fft command, compute the DFT X of vector x . Plot the magnitude of the DFT coefficients. Do they make sense?
c) Zero pad the DFT vector to a total length of 100 by inserting the appropriate number of zeros in the middle of the vector X . Call this zero-padded DFT sequence Y. Why are zeros inserted in the middle rather than at the end? Take the inverse DFT of Y and plot the result. What similarities exist between the new signal y and the original signal x ? What are the differences between x and y ? What is the effect of zero padding in the frequency domain? How is this type of zero padding similar to zero padding in the time domain?
d) Derive a general modification to the procedure of zero padding in the frequency domain to ensure that the amplitude of the resulting time-domain signal is left unchanged.
e) Consider one period of a square wave described by the length-8 vector [1, 1, 1, 1, -1, -1, $-1,-1]$. Zero pad the DFT of this vector to a length of 100 , and call the result S. Scale S according to (d), take the inverse DFT, and plot the result. Does the new time-domain signal $s[n]$ look like a square wave?
Explain.
