HW 3: Ch 4

1) The signal $x[n]$ is shown in Figure below, sketch the signals
a) $x[3-n]$
b) $x[3 n]$
c) $x[1-2 n]$
d) $x\left[\frac{n+1}{4}\right]$

2) What values θ cause the DT sinusoid $\cos (\Omega n+\theta)$ to be a simple shifted version of $\cos (\Omega n)$?
3) Sketch the signals
a) $u[n-2]-u[n-6]$
b) $n(u[n]-u[n-7])$
c) $(n-2)(u[n-2]-u[n-6])$
4) Describe each of the signals in Figures below by a single expression valid for all n. Using only ramp and step functions, give at least two different expressions to describe each signal.

5) The following signals are in the form $e^{\lambda n}$. Express them in the form γ^{n}.
(a) $e^{-0.5 n}$
(b) $e^{+0.5 n}$
(c) $e^{-j \pi n}$
(d) $e^{-(1+j \pi) n}$
(e) $e^{(1-j \pi / 3) n}$

In each case, show the locations of λ and γ in the complex plane. Verify that the exponential is growing if γ lies outside the unit circle (λ in the RHP), is decaying if γ lies within the unit circle (λ in the LHP), and has a constant envelope if γ lies on the unit circle (λ on the imaginary axis).
6) A continuous-time sinusoid $\cos \left(\omega_{0} t\right)$ is sampled at a rate $F_{\mathrm{s}}=100 \mathrm{~Hz}$. The sampled signal is found to be $\cos (0.6 \pi n)$. If there is more than one possible value for ω_{0}, find the general expression for ω_{0}, and determine the three smallest values of $\left|\omega_{0}\right|$.
7) Samples of a continuous-time sinusoid $\cos (100 \pi t)$ are found to be $\cos (\pi n)$. Find the sampling frequency F_{s}. Explain whether there is only one possible value for F_{s}. If there is more than one possible value, find the general expression for the sampling frequency, and determine the three largest possible values.
8) Express the following exponentials in the form $e^{j(\Omega n+\theta)}$, where $-\pi \leq \Omega<\pi$:
(a) $e^{j(8.2 \pi n+\theta)}$
(b) $e^{j 4 \pi n}$
(c) $e^{-j 1.95 n}$
(d) $e^{-j 10.7 \pi n}$

Repeat the problem if Ω is required to be in the range $0 \leq \Omega<2 \pi$.
9) Consider a signal $x(t)=10 \cos (2000 \pi t)+\sqrt{2} \sin (3000 \pi t)+2 \cos (5000 \pi t+\pi / 4)$.
(a) Assuming that $x(t)$ is sampled at a rate of 4000 Hz , find the resulting sampled signal $x[n]$, expressed in terms of apparent frequencies. Does this sampling rate cause any aliasing? Explain.
(b) Determine the maximum sampling interval T that can be used to sample the signal $x(t)$ without aliasing.

