1) Using $x[n]=(3)^{n} u[n], y[-1]=3$, and $y[-2]=2$, iteratively determine (first three terms only) the total response, ZIR, and ZSR for

$$
y[n+2]+3 y[n+1]+2 y[n]=x[n+2]+3 x[n+1]+3 x[n] .
$$

2) A person deposits a $\$ 10,000$ lottery prize at $n=-1$ in a bank savings account and makes no further deposits. The bank offers an annual percent yield (interest rate) of 12% per year (or [(1.12) $\left.)^{1 / 12}-1\right]$ per month). Find the savings account balance $y[n]$, where n indicates the nth month.
3) Using $y[-1]=0$ and $y[-2]=1$, solve $y[\mathrm{n}+2]+3 y[n+1]+2 y[n]=0$.
4) Using $y[-1]=1$ and $y[-2]=1$, solve $y[n+2]+2 y[n+1]+y[n]=0$.
5) Using $y[-1]=1$ and $y[-2]=0$, solve $y[n+2]-2 y[n+1]+2 y[n]=0$.
6) Find the unit impulse response $h[n]$ for each of the following systems:
a) $y[n+1]+2 y[n]=x[n+1]$
b) $y[n]-6 y[n-1]+25 y[n-2]=2 x[n]-4 x[n-1]$
7) A digital integrator that uses a trapezoidal approximation is characterized by the difference equation

$$
y[n]-y[n-1]=T / 2(x[n]+x[n-1]),
$$

where T is the sampling interval and the zero initial condition $y[-1]=0$.
a) Realize the system using gain, delay, and summing blocks. Apply $\delta[n]$ at the input of the realization, and find the resulting impulse response $h[n]$ by inspection.
b) Determine the unit impulse response $h[n]$ by using the methods of Sec. 5.4.

