ENGR 4333/5333: Digital Signal Processing
 HW 8: Ch 6

1) Using the DTFT method, find the zero-state response $y[n]$ of a causal system with frequency response

$$
H(\Omega)=\frac{e^{j \Omega}-0.5}{\left(e^{j \Omega}+0.5\right)\left(e^{j \Omega}-0.1\right)} \text { and input } \quad x[n]=3^{-(n+1)} u[n]
$$

2) Find and sketch the magnitude and phase responses for an accumulator system described as

$$
y[n]-y[n-1]=x[n] .
$$

Determine the responses of this system to the following input sinusoids:
(a) $x_{\mathrm{a}}[n]=\cos (0.1 n)$
(b) $x_{\mathrm{b}}[n]=\sin (\pi n / 2)$
(c) $x_{\mathrm{c}}(t)=\cos \left(10^{6} \pi t\right)$ sampled at rate $F_{\mathrm{s}}=1.25 \mathrm{MHz}$
3) Determine and sketch the magnitude and phase responses for an LTID system specified by the equation

$$
y[n+1]-0.5 y[n]=x[n+1]+0.8 x[n] . \text { Find the system output } y[n] \text { for the input } x[n]=\cos (0.5 n-\pi / 3) .
$$

4) An LTID system impulse response is $h[n]=(0.5)^{n} u[n]$. Find the system output $y[n]$ if the input is the bandpass signal $x[n]=v[n] \cos (3 \pi n / 4)$, where $v[n]$ is a narrowband signal of bandwidth 0.02π. Use the criterion that magnitude-response variations within $\pm 5 \%$ and time-delay (group delay) variations within $\pm 3 \%$ are considered distortionless.
5) A CT signal $x_{c}(t)$, bandlimited to 20 kHz , is sampled at 40 kHz to produce

$$
x[n]=\left\{\begin{array}{cc}
1 & n=-4,-2,0,2,4 \\
-2 & n=-3,-1,1,3 \\
0 & \text { otherwise }
\end{array}\right.
$$

Determine the $\mathrm{CTFT} X_{c}(\omega)$.
6) (a) For the signal $x[n]=3 / 16 \operatorname{sinc}(3 n / 16)$, find the $M=2$ downsampled signal $x_{\downarrow}[n]$. What is the maximum factor M that still permits lossless (no aliasing) downsampling?
(b) Find the spectrum $X_{\downarrow}(\Omega)$ from $x_{\downarrow}[n]$ found in part (a). Verify the result by finding $X_{\downarrow}(\Omega)$ using Eq. (6.68).
(c) The downsampled signal $y[n]=x_{\downarrow}[n]$, found in part (a), is ideally interpolated by factor $L=2$. Find the

DTFT of the interpolated signal $y_{\mathrm{i}}[n]$. Verify this result by finding $Y_{\mathrm{i}}(\Omega)$ using Eq. (6.72). Is $y_{\mathrm{i}}[n]=x[n]$? Why or why not?
7) (a) For the signal $x[n]=n \gamma^{n} u[n]$, find the $L=3$ interpolated signal $x_{\mathrm{i}}[n]$. Determine and sketch the spectrum $X_{\mathrm{i}}(\Omega)$ of the interpolated signal. Assume an ideal interpolation filter.
(b) The interpolated signal $y[n]=x_{\mathrm{i}}[n]$, found in part (a), is downsampled by factor $M=3$. Determine and sketch the spectrum of the downsampled signal $y_{\downarrow}[n]$. Is $y_{\downarrow}[n]=x[n]$? Why or why not?

