1) Using the definition, find the bilateral $z$-transforms, including ROCs, of
(a) $x_{\mathrm{a}}[n]=(0.8)^{n} u[n]+2^{n} u[-n-1]$
(b) $x_{b}[n]=2^{n} u[n]-3^{n} u[-n-1]$
(c) $x_{\mathrm{c}}[n]=(0.5)^{|n|}$
2) Using the definition, find the unilateral $z$-transforms of
(a) $x_{\mathrm{a}}[n]=u[n-m], m>0$
(h) $x_{b}[n]=n \gamma^{n} u[n]$
3) Find all possible inverse bilateral $z$-transforms of
(a) $X_{\mathrm{a}}(z)=\frac{z(z+1)}{(z-.5)(z+2)}$
(b) $X_{\mathrm{b}}(z)=\frac{(z+1)(z-1)}{\left(z^{2}+1\right)}$
4) Find the inverse unilateral $z$-transforms of
(a) $X_{\mathrm{a}}(z)=\frac{z(z-4)}{z^{2}-5 z+6}$
(b) $X_{\mathrm{b}}(z)=\frac{z-4}{z^{2}-5 z+6}$
(c) $X_{\mathrm{c}}(z)=\frac{z(-5 z+22)}{(z+1)(z-2)^{2}}$
(d) $X_{\mathrm{d}}(z)=\frac{z(z-2)}{z^{2}-z+1}$
5) Find the $z$-transforms of the signal shown below

6) An LTID system is described as $2 y[n+2]-3 y[n+1]+y[n]=4 x[n+2]-3 x[n+1]$, with $y[-1]=0, y[-2]=1$, and input $x[n]=(4)^{-n} u[n]$.
(a) Determine the total response $y[n]$.
(b) Determine the zero-input and zero-state components of the response.
(c) Determine the transient and steady state components of the response.
7) A causal controllable and observable, LTID system has transfer function $H(z)=\frac{z}{(z+0.2)(z-0.8)}$
(a) Is this system stable? Explain.
(b) Find the zero-state response to input $x[n]=e^{(n+1)} u[n]$.
(c) Write the difference equation relating the output $y[n]$ to input $x[n]$.
(d) Determine the system's unit impulse response $h[n]$.
