ENGR 4333/5333: Digital Signal Processing

Discrete-Time Fourier Analysis

Chapter 6

Dr. Mohamed Bingabr University of Central Oklahoma

Outline

- Discrete Time Fourier Transform (DTFT)
- Properties of the DTFT
- LTID System Analysis by the DTFT
- Connection between the DTFT and CTFT
- Digital Processing of Analog Signals
- Digital Resampling: A Frequency Domain Perspective
- Generalization of the DTFT to the z-Transform

DTFT is a mathematical tool to represent an aperiodic discrete-time signal in terms of its frequency components (*analysis equation*), so it shows the spectrum of the signal.

$$X(\Omega) = \sum_{n=-\infty}^{\infty} x[n]e^{-j\Omega n} \qquad \text{Remember } \Omega = \frac{2\pi f}{F_s} = 2\pi F$$

To find the inverse relationship, or inverse DTFT, we change the dummy variable *n* to *m* in the above equation and multiply both sides by $e^{j\Omega n}/2\pi$, and then integrate over the interval $-\pi \leq \Omega < \pi$

$$x[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(\Omega) e^{j\Omega n} d\Omega \qquad \qquad x[n] = \lim_{\Delta\Omega\to 0} \sum_{k\Delta\Omega=-\pi}^{\pi} (X(k\Delta\Omega)\Delta\mathcal{F}) e^{j(k\Delta\Omega)n}$$

This *synthesis equation* of the DTFT represents a signal x[n] as a continuous sum (integral) of complex exponentials, each of which is weighted by the signal spectrum $X(\Omega)$.

Example (DTFT)

Determine the DTFT $X(\Omega)$ of a discrete-time rectangular pulse with odd length L_x ,

$$x[n] = u[n + (L_x - 1)/2] - u[n - (L_x + 1)/2].$$

Sketch x[n] and $X(\Omega)$ for $L_x = 9$.

Solution

 $\sum_{m=p}^{n} r^m = \frac{r^p - r^{n+1}}{1 - r}$

Example (IDTFT)

Determine the IDTFT x[n] of the 2π -periodic rectangular pulse train described over the fundamental band $|\Omega| \le \pi$ by $X(\Omega) = \Pi(\Omega/2B)$, where $B \le \pi$. Sketch $X(\Omega)$ and x[n] for $B = \pi/4$.

Solution

Note: $\operatorname{sinc}(t) = \frac{\sin(\pi t)}{\pi t}$

Magnitude, Phase, and Existence of the DTFT

Magnitude and Phase Spectrum of $X(\Omega)$

$$\begin{split} X(\Omega) &= |X(\Omega)| e^{j \angle X(\Omega)} \\ |X(\Omega)| &= |X(-\Omega)| \quad \text{and} \quad \angle X(\Omega) = -\angle X(-\Omega) \\ \text{Even} & \text{Odd} \\ \text{magnitude} & \text{Phase} \end{split}$$

Existence

The DTFT exist if $\sum_{n=-\infty}^{\infty} |x[n]| < \infty$

 $x[n] = 0.8^n u[n]$ $g[n] = 2^n u[n].$

Example (Spectrum and Phase)

Ex1: Determine the magnitude and phase spectra of the causal exponential $x[n] = \gamma^n u[n]$.

Solution
$$X(\Omega) = \frac{1}{1 - \gamma e^{-j\Omega}}$$
 For $|\gamma| < 1$

$$|X(\Omega)| = \frac{1}{\sqrt{1 + \gamma^2 - 2\gamma \cos(\Omega)}} \quad \text{and} \quad \angle X(\Omega) = -\tan^{-1}\left(\frac{\gamma \sin(\Omega)}{1 - \gamma \cos(\Omega)}\right)$$

Obtaining the DTFT from CTFT

If the spectrum of $X(\omega)$ is bandlimited to $|\omega| < \infty$ naturally or by frequency scaling, then the DTFT can be obtained from the CTFT by replacing *t* by *n* and ω by Ω .

Example

For each of the following signals, determine the DTFT from the CTFT. (a) $x[n] = B/\pi \operatorname{sinc}(Bn/\pi)$ (b) x[n] = 1(c) $x[n] = e^{j\Omega_0 n}$ (d) $x[n] = \cos(\Omega_0 n)$

$$\frac{B}{\pi}\operatorname{sinc}\left(\frac{Bt}{\pi}\right) \stackrel{FT}{\leftrightarrow} \Pi\left(\frac{\omega}{2B}\right)$$

Read example in textbook

	x[n]	$X(\Omega)$	
1.	$\delta[n-k]$	$e^{-jk\Omega}$	$\frac{1}{1}$
2.	$\gamma^n u[n]$	$rac{e^{j\Omega}}{e^{j\Omega}-\gamma}$	$ \gamma < 1$
3.	$-\gamma^n u[-n-1]$	$\frac{e^{j\Omega}}{e^{j\Omega}-\gamma}$	$ \gamma > 1$
4.	$\gamma^{ n }$	$rac{1-\gamma^2}{1-2\gamma\cos(\Omega)+\gamma^2}$	$ \gamma < 1$
5.	$n\gamma^n u[n]$	$rac{\gamma e^{j\Omega}}{(e^{j\Omega}-\gamma)^2}$	$ \gamma < 1$
6.	$ \gamma ^n \cos(\Omega_0 n + \theta) u[n]$	$\frac{e^{j\Omega}[e^{j\Omega}\cos(\theta) - \gamma \cos(\Omega_0 - \theta)]}{e^{j2\Omega} - 2 \gamma \cos(\Omega_0)e^{j\Omega} + \gamma ^2}$	$ \gamma < 1$
7.	$u[n] - u[n - L_x]$	$\frac{\sin(L_x\Omega/2)}{\sin(\Omega/2)} e^{-j\Omega(L_x-1)/2}$	
8.	$\frac{B}{\pi}\operatorname{sinc}\left(\frac{Bn}{\pi}\right)$	$\sum_{k=-\infty}^{\infty} \prod \left(\frac{\Omega - 2\pi k}{2B} \right)$	
9.	$\frac{B}{2\pi}\operatorname{sinc}^2\left(\frac{Bn}{2\pi}\right)$	$\sum_{k=-\infty}^{\infty} \Lambda\left(\frac{\Omega - 2\pi k}{2B}\right)$	
10.	1	$2\pi \sum_{k=-\infty}^{\infty} \delta(\Omega - 2\pi k)$	
11.	u[n]	$\frac{e^{j\Omega}}{e^{j\Omega}-1} + \pi \sum_{k=-\infty}^{\infty} \delta(\Omega - 2\pi k)$	
12.	$e^{j\Omega_0 n}$	$2\pi \sum_{k=-\infty}^{\infty} \delta(\Omega - \Omega_0 - 2\pi k)$	
13.	$\cos(\Omega_0 n)$	$\pi \sum_{k=-\infty}^{\infty} \delta(\Omega - \Omega_0 - 2\pi k) + \delta(\Omega + \Omega_0)$	$_{0}-2\pi k)$
14.	$\sin(\Omega_0 n)$	$\frac{\pi}{j} \sum_{k=-\infty}^{\infty} \delta(\Omega - \Omega_0 - 2\pi k) - \delta(\Omega + \Omega_0) - \delta$	$_0 - 2\pi k$)
15.	$\cos(\Omega_0 n) u[n]$	$\frac{e^{j2\Omega} - e^{j\Omega}\cos(\Omega_0)}{e^{j2\Omega} - 2\cos(\Omega_0)e^{j\Omega} + 1} + \frac{\pi}{2}\sum_{k=-\infty}^{\infty}\delta(\Omega - \Omega_0 - 2\pi k) + \delta(\Omega + \Omega_0 - 2\pi k)$	
16.	$\sin(\Omega_0 n) u[n]$	$\frac{e^{j\Omega}\sin(\Omega_0)}{e^{j2\Omega}-2\cos(\Omega_0)e^{j\Omega}+1} + \frac{\pi}{2j}\sum_{k=-\infty}^{\infty}\delta(\Omega)$	$-\Omega_0 - 2\pi k) - \delta(\Omega + \Omega_0 - 2\pi k)$

Expressing $X(\Omega)$ over the fundamental band to simplify expression by removing the summation symbol that indicated periodicity.

	x[n]	$X(\Omega)$ for $-\pi \leq \Omega < \pi$	
1.	$\delta[n-k]$	$e^{-jk\Omega}$	Integer k
2.	$\gamma^n u[n]$	$rac{e^{j\Omega}}{e^{j\Omega}-\gamma}$	$ \gamma < 1$
3.	$-\gamma^n u[-n-1]$	$rac{e^{j\Omega}}{e^{j\Omega}-\gamma}$	$ \gamma > 1$
4.	$\gamma^{ n }$	$\frac{1-\gamma^2}{1-2\gamma\cos(\Omega)+\gamma^2}$	$ \gamma < 1$
5.	$n\gamma^n u[n]$	$rac{\gamma e^{j\Omega}}{(e^{j\Omega}-\gamma)^2}$	$ \gamma < 1$
6.	$ \gamma ^n \cos(\Omega_0 n + \theta) u[n]$	$\frac{e^{j\Omega}[e^{j\Omega}\cos(\theta) - \gamma \cos(\Omega_0 - \theta)]}{e^{j2\Omega} - 2 \gamma \cos(\Omega_0)e^{j\Omega} + \gamma ^2}$	$ \gamma < 1$
7.	$u[n] - u[n - L_x]$	$\frac{\sin(L_x\Omega/2)}{\sin(\Omega/2)} e^{-j\Omega(L_x-1)/2}$	
8.	$\frac{B}{\pi}\operatorname{sinc}\left(\frac{Bn}{\pi}\right)$	$\Pi(\frac{\Omega}{2B})$	$0 < B \leq \pi$
9.	$\frac{B}{2\pi}\operatorname{sinc}^2\left(\frac{Bn}{2\pi}\right)$	$\Lambda\left(\frac{\Omega}{2B}\right)$	$0 < B \leq \pi$
10.	1	$2\pi\delta(\Omega)$	
11.	u[n]	$\frac{e^{j\Omega}}{e^{j\Omega}-1} + \pi\delta(\Omega)$	
12.	$e^{j\Omega_0 n}$	$2\pi\delta(\Omega-\Omega_0)$	$ \Omega_0 < \pi$
13.	$\cos(\Omega_0 n)$	$\pi \left[\delta(\Omega - \Omega_0) + \delta(\Omega + \Omega_0) \right]$	$ \Omega_0 < \pi$
14.	$\sin(\Omega_0 n)$	$\frac{\pi}{j} \left[\delta(\Omega - \Omega_0) - \delta(\Omega + \Omega_0) \right]$	$ \Omega_0 < \pi$
15.	$\cos(\Omega_0 n) u[n]$	$\frac{e^{j2\Omega} - e^{j\Omega}\cos(\Omega_0)}{e^{j2\Omega} - 2\cos(\Omega_0)e^{j\Omega} + 1} + \frac{\pi}{2} \left[\delta(\Omega - \Omega_0) + \delta(\Omega + \Omega_0)\right]$	$ \Omega_0 < \pi$
16.	$\sin(\Omega_0 n) u[n]$	$\frac{e^{j\Omega}\sin(\Omega_0)}{e^{j2\Omega}-2\cos(\Omega_0)e^{j\Omega}+1} + \frac{\pi}{2j}\left[\delta(\Omega-\Omega_0) - \delta(\Omega+\Omega_0)\right]$	$ \Omega_0 < \pi$

Example (DTFT of finite Duration Signals)

A signal x[n] equals [1, 2, -1, -2, 0, 2, 1, -2, -1] for $-4 \le n \le 4$ and is otherwise 0. Sketch the DTFT of this signal. $x(\Omega) = \sum_{k=0}^{\infty} x[n]e^{-j\Omega}$

Solution

x = [1 2 -1 -2 0 2 1 -2 -1]; n2 = 4; Omega = linspace(-pi,pi,501); X = @(Omega) polyval(x,exp(1j*Omega))./exp(1j*Omega*n2); subplot(211); plot(Omega,abs(X(Omega))); subplot(212); plot(Omega,angle(X(Omega)));

Linearity Property

If $x[n] \iff X(\Omega)$ and $y[n] \iff Y(\Omega)$ then $ax[n] + by[n] \iff aX(\Omega) + bY(\Omega)$

Complex-Conjugation Property

if
$$x[n] \Longleftrightarrow X(\Omega)$$
, then $x^*[n] \Longleftrightarrow X^*(-\Omega)$

Time Scaling Property

No simple rule for time scaling (upsampling or downsampling).

Time-Reversal Property

if
$$x[n] \Longleftrightarrow X(\Omega)$$
, then $x[-n] \Longleftrightarrow X(-\Omega)$

Example: Derive pair 4, $\gamma^{|n|}$, using pair 2, $\gamma^n u(n)$, and the time-reversal property

Time-Shifting Property

8. $\frac{B}{\pi}\operatorname{sinc}\left(\frac{Bn}{\pi}\right)$

if
$$x[n] \iff X(\Omega)$$
, then $x[n-m] \iff X(\Omega)e^{-j\Omega m}$ for integer m

Example: Use the time-shifting property to determine the DTFT of $x[n] = \frac{1}{4} \operatorname{sinc}\left(\frac{n-2}{4}\right)$

Frequency-Shifting Property

if
$$x[n] \iff X(\Omega)$$
, then $x[n]e^{j\Omega_0 n} \iff X(\Omega - \Omega_0)$

Modulation Property

$$x[n]\cos(\Omega_0 n) \iff \frac{1}{2} \left[X(\Omega - \Omega_0) + X(\Omega + \Omega_0) \right]$$

Example: A signal $x[n] = \operatorname{sinc}(n/4)$ modulates a carrier $\cos(\Omega_0 n)$. Using the periodic expression for $X(\Omega)$ from the Table, find and sketch the spectrum of the modulated signal $x[n] \cos(\Omega_0 n)$ for (a) $\Omega_0 = 0.5\pi$ (b) $\Omega_0 = 0.85\pi$

8. $\frac{B}{\pi}\operatorname{sinc}\left(\frac{Bn}{\pi}\right)$ $\Pi\left(\frac{\Omega}{2B}\right)$

Frequency-Differentiation Property

if
$$x[n] \iff X(\Omega)$$
, then $nx[n] \iff j \frac{dX(\Omega)}{d\Omega}$

Example: In the Table, derive pair 5 using pair 2 and the frequency-differentiation property.

$$\begin{array}{ll} \operatorname{pair 2} & \operatorname{pair 5} \\ \gamma^{n}u[n] \Longleftrightarrow \frac{e^{j\Omega}}{e^{j\Omega} - \gamma}, & |\gamma| < 1 & n\gamma^{n}u[n] \Longleftrightarrow \frac{\gamma e^{j\Omega}}{(e^{j\Omega} - \gamma)^{2}} \end{array}$$

Time-Domain Convolution Property

$$x[n] \iff X(\Omega) \text{ and } y[n] \iff Y(\Omega)$$

 $x[n] * y[n] = \sum_{m=-\infty}^{\infty} x[m]y[n-m] \iff X(\Omega)Y(\Omega)$

This property is the basis for the frequency-domain analysis of LTID systems.

Frequency-Domain Convolution Properties

$$x[n]y[n] \iff \frac{1}{2\pi} X(\Omega) \circledast Y(\Omega) = \frac{1}{2\pi} \int_{2\pi} X(\lambda) Y(\Omega - \lambda) d\lambda$$

Circular (or periodic) convolution

Example

Letting $x[n] = B/\pi \operatorname{sinc} (Bn/\pi)$, find and sketch the spectrum $Y(\Omega)$ of the signal $y[n] = x^2[n]$ for

(a) $0 < B \le \pi/2$ (b) $\pi/2 < B \le \pi$

Solution

$$\frac{B}{\pi}\operatorname{sinc}\left(\frac{Bn}{\pi}\right) \Longleftrightarrow \Pi\left(\frac{\Omega}{2B}\right), \quad |\Omega| \le \pi$$
$$\hat{X}(\Omega) * \hat{X}(\Omega) = \int_{-\pi}^{\pi} \hat{X}(\lambda) \hat{X}(\Omega - \lambda) \, d\lambda$$
$$x^{2}[n] \Longleftrightarrow \frac{1}{2\pi} \hat{X}(\Omega) * \hat{X}(\Omega) = \frac{B}{\pi} \Lambda\left(\frac{\Omega}{4B}\right),$$
$$Y(\Omega) = \frac{B}{\pi} \sum_{k=-\infty}^{\infty} \Lambda\left(\frac{\Omega - 2\pi k}{4B}\right)$$

Correlation Property $\rho_{x,y}[l] = \sum_{n=-\infty}^{\infty} x[n+l]y^*[n]$ $\rho_{x,y}[l] = x[l] * y^*[-l] \iff X(\Omega)Y^*(\Omega)$

Finding Signal Energy in the Frequency-Domain

$$\rho_{x,x}[0] = \sum_{n=-\infty}^{\infty} x[n]x^*[n] = \sum_{n=-\infty}^{\infty} |x[n]|^2 = E_x$$
$$E_x = \sum_{n=-\infty}^{\infty} |x[n]|^2 = \frac{1}{2\pi} \int_{2\pi} |X(\Omega)|^2 d\Omega = \frac{1}{\pi} \int_0^{\pi} |X(\Omega)|^2 d\Omega \quad \text{Parseval's Theorem}$$

Example: Use Parseval's theorem to find the energy of $x[n] = \operatorname{sinc}(Bn/\pi)$.

$$\operatorname{sinc}\left(\frac{Bn}{\pi}\right) \qquad \qquad \Pi\left(\frac{\Omega}{2B}\right)$$

8. $\frac{B}{\pi}$

6.3 LTID System Analysis by the DTFT

LTID System Analysis

$$\begin{array}{c} x[n] \\ X(\Omega) \end{array} \longrightarrow \begin{array}{c} h[n] \\ H(\Omega) \end{array} \longrightarrow \begin{array}{c} y[n] = x[n] * h[n] \\ Y(\Omega) = X(\Omega)H(\Omega) \end{array}$$
$$y[n] = \frac{1}{2\pi} \int_{2\pi} X(\Omega)H(\Omega) e^{j\Omega n} \, d\Omega \end{array}$$

The output y[n] is a scaled sum of the responses to all the component frequencies of the input.

$$e^{j\Omega_0 n} \longrightarrow \begin{bmatrix} h[n] \\ H(\Omega) \end{bmatrix} \longrightarrow H(\Omega_0) e^{j\Omega_0 n}$$

If the input is everlasting exponential, $x[n] = e^{j\Omega_o n}$, then the output will be the same as the input multiplied by the system response to the frequency Ω_o , $y[n] = H(\Omega_o)e^{j\Omega_o n}$.

Frequency Response from a Difference Equation

$$\sum_{k=0}^{K} a_k y[n-k] = \sum_{l=0}^{K} b_l x[n-l] \quad \Longleftrightarrow \quad \sum_{k=0}^{K} a_k Y(\Omega) e^{-jk\Omega} = \sum_{l=0}^{K} b_l X(\Omega) e^{-jl\Omega}$$
$$\left(\sum_{k=0}^{K} a_k e^{-jk\Omega}\right) Y(\Omega) = \left(\sum_{l=0}^{K} b_l e^{-jl\Omega}\right) X(\Omega)$$
$$H(\Omega) = \frac{Y(\Omega)}{X(\Omega)} = \frac{\sum_{l=0}^{K} b_l e^{-jl\Omega}}{\sum_{k=0}^{K} a_k e^{-jk\Omega}}$$

Find $H(\Omega)$ and determine the zero-state response y[n] to input $x[n] = \cos(3\pi n/10)$ of an LTID system described by the difference equation y[n] - 1.8y[n-1] + 0.81y[n-2] = x[n] + 2x[n-1]

 $y[n] = 3.61 \cos(3\pi n/10 - 2.63)$

Example

An LTID system is specified by the equation

y[n] - 0.5y[n - 1] = x[n].

Find $H(\Omega)$, the frequency response of this system, and determine the zero-state response y[n] if the input $x[n] = (0.8)^n u[n]$.

Solution

$$y[n] = \left[\frac{8}{3}(0.8)^n - \frac{5}{3}(0.5)^n\right]u[n] \qquad \qquad \frac{e^{j\Omega}}{e^{j\Omega} - \gamma}$$

Matlab Code to find Partial Fraction Expansion

Ideal and Realizable Filters

Ideal Lowpass Filter: Noncausal System

Realizable Lowpass Filter: with delay and ripple in pass band region.

6.4 Connection between the DTFT and the CTFT

Connection between the DTFT and the CTFT

Example

Consider a bandlimited signal $x_{c}(t)$ with spectrum

 $X_{c}(\omega) = \begin{cases} \frac{100}{\omega^{2} + 10^{4}} & |\omega| < 50\pi \\ 0 & \text{otherwise} \end{cases}$

For T = 0.01, determine the DTFT $X(\Omega)$ of $x[n] = x_c(nT)$. Discuss what happens if instead T = 0.1.

$$X(\Omega) = \frac{1}{T} X_c \left(\frac{\Omega}{T}\right)$$

$$X(\Omega) = \frac{1}{T} \sum_{k=-\infty}^{\infty} X_c \left(\frac{\Omega - 2\pi k}{T} \right)$$

Answer

$$X(\Omega) = \begin{cases} \frac{1}{\Omega^2 + 1} & |\Omega| < 0.5\pi\\ 0 & \text{otherwise} \end{cases}$$

Digital Processing of Analog Signals

Important conditions for the impulse invariance method: (design of discrete IIR from continuous) 1. The sampling rate is above the Nyquist rate, higher than twice the bandwidth of the signal x(t)2. The system is bandlimited

Frequency domain Characterization of ideal C/D and D/C Converter

Digital Filter Design from Continuous Filter $H_c(\omega)$

Frequency-domain criterion for digital filter design:

$$H(\Omega) = H_{\rm c}(\Omega/T), \qquad |\Omega| \le \pi$$

Prove

$$H(\Omega) = \frac{Y(\Omega)}{X(\Omega)} = \frac{\frac{1}{T}Y_c(\Omega/T)}{\frac{1}{T}X_c(\Omega/T)} = H_c(\Omega/T)$$

Time-domain criterion for digital filter design (IIR impulse invariance method):

$$h[n] = Th_{\mathbf{c}}(nT)$$

Prove

$$h_{\mathbf{c}}(t) = \frac{1}{2\pi} \int_{-\pi/T}^{\pi/T} H_{\mathbf{c}}(\omega) e^{j\omega t} \, d\omega \xrightarrow[\alpha \to \Omega/T]{} h_{\mathbf{c}}(nT) = \frac{1}{2\pi T} \int_{-\pi}^{\pi} H(\Omega) e^{j\Omega n} \, d\Omega = \frac{1}{T} h[n]$$

Example

Using the minimum possible sampling frequency, design a DT system that delays a bandlimited $(B \le 10 \text{ kHz})$ CT input $x_c(t)$ by $\tau = 250 \ \mu$ s. Sketch the frequency responses $H(\Omega)$ and $\hat{H}_c(\omega)$. Explain how closely the system compares with an ideal analog delay $\tau = 250 \ \mu$ s. Using a hypothetical bandlimited ($B \le 10 \text{ kHz}$) signal $x_c(t)$ and its spectrum $X_c(\omega)$, sketch the signals and spectra at the input of the C/D converter, the input of $H(\Omega)$, the output of $H(\Omega)$, and the output of the D/C converter.

Answer

 $y_c(t) = x_c(t - \tau)$ $H_c(\omega) = e^{-j\omega\tau}$ $H(\Omega) = H_c(\Omega/T)$ $H(\Omega) = e^{-j\Omega\tau/T} = e^{-j5\Omega} \qquad |\Omega| \le \pi$

$$\begin{split} H_{\rm c}(\omega) &= e^{-j\omega\tau} = e^{-j5\omega T} \\ H(\Omega) &= H_{\rm c}(\Omega/T) = e^{-j5\Omega}, \qquad |\Omega| \leq \pi \\ h[n] &= \delta[n-5] \\ \hat{H}_{\rm c}(\omega) &= \begin{cases} e^{-j5\omega T} & |\omega T| \leq \pi \\ 0 & \text{otherwise} \end{cases} \\ \hat{H}_{\rm c}(\omega) &= e^{-j\omega/4000} \\ X(\Omega) &= \frac{1}{T} X_{\rm c}(\Omega/T), \qquad |\Omega| \leq \pi \\ Y(\Omega) &= X(\Omega) H(\Omega) = X(\Omega) e^{-j5\Omega} \\ y[n] &= x[n-5] \\ Y_{\rm c}(\omega) &= X_{\rm c}(\omega) e^{-j5\omega T} \\ y_{\rm c}(t) &= x_{\rm c}(t-5T) = x_{\rm c}(t-\tau), \qquad \tau = 250 \, \mu \text{s.} \end{split}$$

6.6 Digital Resampling: A Frequency-Domain Perspective

Digital Resampling: A Frequency-Domain Perspective

Down-Sampling

 $x_{\downarrow}[n] = x[Mn]$

$$X_{\downarrow}(\Omega) = \frac{1}{M} \sum_{m=0}^{M-1} X\left(\frac{\Omega - 2\pi m}{M}\right)$$

To avoid aliasing $MB \le \pi$

Downsampling and Decimation

If the spectrum $X_{\downarrow}(\Omega)$ of the downsampled signal x[n] does not meet this condition $MB \le \pi$ then use a filter H_d with cutoff frequency $\Omega_c \le \pi/M$.

$$\begin{array}{c} x[n] \\ X(\Omega) \end{array} \longrightarrow \begin{array}{c} H_{\mathrm{d}} \\ \widehat{X}(\Omega) \end{array} \xrightarrow{\hat{x}[n]} \\ \widehat{X}(\Omega) \end{array} \longrightarrow \begin{array}{c} x_{\mathrm{d}}[n] \\ X_{\mathrm{d}}(\Omega) \end{array}$$

 $\hat{X}(\Omega) = X(\Omega)H_d(\Omega)$ Decimation

$$X_{\rm d}(\Omega) = \frac{1}{M} \sum_{m=0}^{M-1} \hat{X}\left(\frac{\Omega - 2\pi m}{M}\right) = \frac{1}{M} \sum_{m=0}^{M-1} X\left(\frac{\Omega - 2\pi m}{M}\right) H_{\rm d}\left(\frac{\Omega - 2\pi m}{M}\right)$$

for $MB \leq \pi$

Time representation for Decimation

$$h_{\rm d}[n] = \frac{1}{M} \operatorname{sinc}(n/M) \qquad \qquad x_{\rm d}[n] = \frac{1}{M} \sum_{k=-\infty}^{\infty} x[k] \operatorname{sinc}\left(n - \frac{k}{M}\right)$$

Downsampling and Decimation

The DTFT $X(\Omega)$ of a signal x[n] is shown below. Using M = 3, determine the DTFTs of the downsampled signal $x_{\downarrow}[n]$ and the decimated signal $x_d[n]$. Assume that the decimator uses an ideal lowpass filter.

$$X_{\downarrow}(\Omega) = \frac{1}{M} \sum_{m=0}^{M-1} X\left(\frac{\Omega - 2\pi m}{M}\right)$$

Downsampling and Decimation

A signal $x[n] = \gamma^n u[n]$, where $|\gamma| < 1$, is downsampled by factor M = 2. Determine the resulting downsampled signal $x_{\downarrow}[n] = x[2n]$ and its spectrum $X_{\downarrow}(\Omega)$.

$$\begin{aligned} x[n] &= \gamma^n u[n] \Longleftrightarrow \frac{e^{j\Omega}}{e^{j\Omega} - \gamma} = \frac{1}{1 - \gamma e^{-j\Omega}} = X(\Omega) \\ x_{\downarrow}[n] &= x[Mn] = x[2n] = \gamma^{2n} u[2n] = \gamma^{2n} u[n] \end{aligned}$$

We can use the table to find the $X_{\downarrow}(\Omega)$ but let us use $X_{\downarrow}(\Omega) = \frac{1}{M} \sum_{n=1}^{M-1} X\left(\frac{\Omega - 2\pi m}{M}\right)$

$$\begin{split} X_{\downarrow}(\Omega) &= \frac{1}{2} \left[X\left(\frac{\Omega}{2}\right) + X\left(\frac{\Omega-2\pi}{2}\right) \right] \\ &= \frac{1}{2} \left[X\left(\frac{\Omega}{2}\right) + X\left(\frac{\Omega}{2}-\pi\right) \right] \\ &= \frac{1}{2(1-\gamma e^{-j\Omega/2})} + \frac{1}{2(1+\gamma e^{-j\Omega/2})} \\ &= \frac{1}{1-\gamma^2 e^{-j\Omega}}. \end{split}$$

Interpolation and Upsampling

Interpolation and Upsampling

Consider a signal $x[n] = \gamma^{2n}u[n]$, where $|\gamma| < 1$. Using L = 2, determine the spectra of the upsampled signal $x_{\uparrow}[n]$ and the ideally interpolated signal $x_{i}[n]$.

$$X(\Omega) = 1/(1 - \gamma^2 e^{-j\Omega})$$
$$X_{\uparrow}(\Omega) = X(2\Omega) = \frac{1}{1 - \gamma^2 e^{-j2\Omega}}$$

$$X_{\rm i}(\Omega) = X_{\uparrow}(\Omega)H_{\rm i}(\Omega) = \frac{2}{1 - \gamma^2 e^{-j2\Omega}} \prod\left(\frac{\Omega}{\pi}\right), \qquad |\Omega| \le \pi$$

Time-Domain Characterization of Up-Sampling

$$x_{i}[n] = x_{\uparrow}[n] * h_{i}[n] = \sum_{m=-\infty}^{\infty} x_{\uparrow}[m]h_{i}[n-m] \xrightarrow{x_{\uparrow}[n]} (1 + 1) \xrightarrow{x_{\uparrow}[n]} (1 + 1) \xrightarrow{x_{\uparrow}[n]} (1 + 1) \xrightarrow{x_{\downarrow}[n]} (1 + 1)$$

Example

Using the L = 4 linear interpolator in Fig. below and an input of $x[n] = \sin(2\pi n/7)(u[n]-u[n-7])$, determine and sketch the interpolator output $x_i[n]$.

$$x_{\mathbf{i}}[n] = \sum_{k=-\infty}^{\infty} x[k]h_{\mathbf{i}}[n-kL] \qquad \hat{h}_{\mathbf{i}}[n] = \Lambda\left(\frac{n}{8}\right)$$
_(b)

Fractional Sampling Rate Conversion

- An interpolator/decimator cascade used for fractional sampling rate changes.
- Upsampling by *L* followed by downsampling by *M* changes the overall sampling rate by a fractional amount L/M.
- The two lowpass filters H_i and H_d , being in cascade, can be replaced by a single lowpass filter of cutoff frequency π/L or π/M , whichever is lower.
- Preferable to do upsampling prior to downsampling to avoid loss of information.

Example: Suppose that the bandwidth of x[n] is $\pi/3$, and we wish to change the sampling rate by factor 3/5.

6.7 Generalization of the DTFT to the z-Transform

Generalization of the DTFT to the z-Transform

1) DTFT synthesize an arbitrary signal x[n] using sinusoids or complex exponentials of the form $e^{j\Omega n}$. DTFT exist only for absolutely summable signals.

2) In System analysis, DTFT is incapable of handling exponentially growing (or decaying) signals.

3) z-transform avoid the limitation of the DTFT by generalizing the complex frequency by replacing $j\Omega$ by $\sigma + j\Omega$, where Ω is the oscillation rate and σ is the decay (or grow) rate.

