ENGR 4333/5333: Digital Signal Processing

Discrete-Time System Analysis Using the z-Transform

Chapter 7

Dr. Mohamed Bingabr

University of Central Oklahoma

Outline

- The z-Transform
- The inverse z-Transform
- Properties of the z-Transform
- Z-Transform Solution of Linear Difference Equations
- Block Diagram and System Realization
- Frequency Response of Discrete-Time Systems
- Finite Word-Length Effects
- Connection between the Laplace and z-Transform

The Bilateral z-Transform

The z-transform is a mathematical tool in system analysis and design. It represent input $x[n]$ as a sum of everlasting exponentials (complex frequency) of the form z^{n}.
The Laplace Transform $\quad X(s)=\int_{-\infty}^{\infty} x(t) e^{-s t} d t$
The Bilateral z-transform: $x[n]$ exist for positive and negative n.

$$
X(z)=\sum_{n=-\infty}^{\infty} x[n] z^{-n} \quad \mathrm{z}=e^{\sigma+j \Omega}
$$

The inverse z-transform

$$
x[n]=\frac{1}{2 \pi j} \oint X(z) z^{n-1} d z
$$

$$
X(z)=\mathcal{Z}\{x[n]\} \quad \text { and } \quad x[n]=\mathcal{Z}^{-1}\{X(z)\} \quad x[n] \stackrel{\mathcal{Z}}{\Longleftrightarrow} X(z)
$$

Example

Find the z-transform and the corresponding ROC for the causal signal $x[n]=\gamma^{n} u[n]$.

Solution

$$
\begin{aligned}
X(z)= & \sum_{n=0}^{\infty}\left(\frac{\gamma}{z}\right)^{n}=1+\left(\frac{\gamma}{z}\right)+\left(\frac{\gamma}{z}\right)^{2}+\left(\frac{\gamma}{z}\right)^{3}+\cdots \\
X(z)= & \frac{1}{1-\frac{\gamma}{z}}=\frac{z}{z-\gamma} \\
& \mathrm{ROC:} \\
& \left|\frac{\gamma}{z}\right|<1<1 \quad \text { Or }|z|>|\gamma|
\end{aligned}
$$

$$
\sum_{m=p}^{n} r^{m}=\frac{r^{p}-r^{n+1}}{1-r}
$$

(b)

Note: for causal signal the ROC extend outward to the centered circle.

Example

Find the z-transform and the corresponding ROC for the causal signal $y[n]=-\gamma^{n} u[-n-1]$.

Solution

$$
Y(z)=\sum_{n=-\infty}^{-1}-\left(\frac{\gamma}{z}\right)^{n}
$$

$$
Y(z)=\frac{z}{z-\gamma}
$$

$$
\text { ROC: }\left|\frac{z}{\gamma}\right|<1 \text { or }|z|<|\gamma|
$$

$$
\sum_{m=p}^{n} r^{m}=\frac{r^{p}-r^{n+1}}{1-r}
$$

(a)

(b)

Note: for anti-causal signal the ROC extend inward to the centered circle.

Existence of the Bilateral z-Transform

$$
\begin{array}{r}
X(z)=\sum_{n=0}^{\infty} x[n] z^{-n}=\sum_{n=0}^{\infty} \frac{x[n]}{z^{n}} \\
\quad|X(z)| \leq \sum_{n=0}^{\infty} \frac{|x[n]|}{|z|^{n}}<\infty
\end{array}
$$

- The z-transform exist for any signal $x[n]$ that grows no faster than an exponential signal r^{n}, for some real and positive r.
- For a finite length sequence the ROC is the entire z-plane except zero if $x[n]$ is nonzero for some positive n, and ∞ if $x[n]$ is nonzero for some negative n.
- If $z=x+y$ then the region of convergence for $z\left(R_{z}\right)$ is at least $R_{x} \cap R_{y}$.

Example

Find the z-transform of $w[n]=x[n]+y[n]$ where $x[n]=(0.9)^{n} u[n]$ and $y[n]=(1.2)^{n} u[-n-1]$. What is the z-transform of $w[n]$ if $x[n]$ is changed to $(2)^{n} u[n]$. Solution

$$
\begin{aligned}
X(z) & =\frac{z}{z-0.9} \text { with ROC }|z|>0.9 \\
Y(z) & =\frac{-z}{z-1.2} \text { with ROC }|z|<1.2 \\
W(z) & =X(z)+Y(z) \\
& =\frac{z}{z-0.9}+\frac{-z}{z-1.2}=\frac{-0.3 z}{(z-0.9)(z-1.2)}
\end{aligned}
$$

(a)

(b)

ROC: $0.9<|z|<1.2$

If $x[n]$ is changed to $(2)^{n} u[n]$ then the ROC of $X(z)$ becomes $|z|>2$ and there is no common ROC for X and Y so the z-transform for w does not exist.

The Unilateral z-Transform

When the signal is causal, $x[n]=0$ for $n<0$, then the z-transform is unilateral:

$$
X(z)=\sum_{n=0}^{\infty} x[n] z^{-n}
$$

Example: Determine the unilateral z-transforms of (a) $x_{a}[n]=\delta[n]$, (b) $x_{b}[n]=u[n]$,
(c) $x_{c}[n]=\cos (\beta n) u[n]$, and
(d) $x_{d}[n]=u[n]-u[n-5]$.

$$
X_{\mathrm{a}}(z)=1, \quad \text { ROC }: \quad \text { all } z
$$

$$
X_{\mathrm{b}}(z)=\frac{z}{z-1}, \quad \text { ROC: } \quad\left|\frac{1}{z}\right|<1 \quad \text { or } \quad|z|>1
$$

$$
X_{\mathrm{c}}(z)=\frac{z[z-\cos (\beta)]}{z^{2}-2 \cos (\beta) z+1}, \quad \text { ROC: } \quad|z|>1
$$

$$
X_{\mathrm{d}}(z)=\frac{z}{z-1}\left(1-z^{-5}\right), \quad \text { ROC: all } z \neq 0
$$

The transfer function $H(\mathrm{z})$ is the z-transform of the impulse response $h[n]$ of an LTID system;

$x[n]$	$X(z)$	ROC
1. $\delta[n]$	1	All z
2. $u[n]$	$\frac{z}{z-1}$	$\|z\|>1$
3. $\gamma^{n} u[n]$	$\frac{z}{z-\gamma}$	$\|z\|>\|\gamma\|$
4. $\gamma^{n-1} u[n-1]$	$\frac{1}{z-\gamma}$	$\|z\|>\|\gamma\|$
5. $n \gamma^{n} u[n]$	$\frac{\gamma z}{(z-\gamma)^{2}}$	$\|z\|>\|\gamma\|$
6. $n^{2} \gamma^{n} u[n]$	$\frac{\gamma z(z+\gamma)}{(z-\gamma)^{3}}$	$\|z\|>\|\gamma\|$
7. $\frac{n!}{(n-m)!m!} \gamma^{n-m} u[n]$	$\frac{z}{(z-\gamma)^{m+1}}$	$\|z\|>\|\gamma\|$
8. $\|\gamma\|^{n} \cos (\beta n) u[n]$	$\frac{z[z-\|\gamma\| \cos (\beta)]}{z^{2}-2\|\gamma\| \cos (\beta) z+\|\gamma\|^{2}}$	$\|z\|>\|\gamma\|$
9. $\|\gamma\|^{n} \sin (\beta n) u[n]$	$\frac{z\|\gamma\| \sin (\beta)}{z^{2}-2\|\gamma\| \cos (\beta) z+\|\gamma\|^{2}}$	$\|z\|>\|\gamma\|$
10. $\|\gamma\|^{n} \cos (\beta n+\theta) u[n]$	$\begin{aligned} & \frac{z[z \cos (\theta)-\|\gamma\| \cos (\beta-\theta)]}{z^{2}-2\|\gamma\| \cos (\beta) z+\left.\|\gamma\|\right\|^{2}} \\ & =\frac{\left(0.5 e^{j \theta}\right) z}{z-\|\gamma\| e e^{\beta \beta}}+\frac{\left(0.5 e^{-j \theta}\right) z}{z-\|\gamma\| e^{-j \beta}} \end{aligned}$	$\|z\|>\|\gamma\|$
11. $r\|\gamma\|^{n} \cos (\beta n+\theta) u[n]$ $\begin{aligned} & r=\sqrt{\frac{a^{2}\|\gamma\|^{2}+b^{2}-2 a b c}{\|\gamma\|^{2}-c^{2}}} \\ & \beta=\cos ^{-1}\left(\frac{-c}{\left\lvert\, \frac{\|c\|}{}\right.}\right) \\ & \theta=\tan ^{-1}\left(\frac{a c-b}{a \sqrt{\|\gamma\|^{2}-c^{2}}}\right) \end{aligned}$	$\frac{z(a z+b)}{z^{2}+2 c z+\|\gamma\|^{2}}$	$\|z\|>\|\gamma\|$
12. $\delta[n-k]$	z^{-k}	$\begin{array}{ll} \|z\|>0 & k>0 \\ \|z\|<\infty & k<0 \end{array}$
13. $-u[-n-1]$	$\frac{z}{z-1}$	$\|z\|<1$
14. $-\gamma^{n} u[-n-1]$	$\frac{z}{z-\gamma}$	$\|z\|<\|\gamma\|$
15. $-n \gamma^{n} u[-n-1]$	$\frac{z \gamma}{(z-\gamma)^{2}}$	$\|z\|<\|\gamma\|$

7.2
 The Inverse z-Transform

The Inverse z-Transform

Using the contour integral to find the inverse z-transform require the knowledge of complex variable theory so we will use the table and partial fraction expansions to find the inverse z transform.
\triangleright Example 7.5 (Inverse Unilateral z-Transform by Partial Fraction Expansion)
Using partial fraction expansions and Table 7.1, determine the inverse unilateral z-transforms of
(a) $\quad X_{\mathrm{a}}(z)=\frac{8 z-19}{(z-2)(z-3)}$
(b) $\quad X_{\mathrm{b}}(z)=\frac{z\left(2 z^{2}-11 z+12\right)}{(z-1)(z-2)^{3}}$
(c) $\quad X_{\mathrm{c}}(z)=\frac{2 z(3 z+17)}{(z-1)\left(z^{2}-6 z+25\right)}$

$$
\begin{array}{ll}
x_{\mathrm{a}}[n]=\left[3(2)^{n-1}+5(3)^{n-1}\right] u[n-1] & \text { or }
\end{array} x_{\mathrm{a}}[n]=-\frac{19}{6} \delta[n]+\left[\frac{3}{2}(2)^{n}+\frac{5}{3}(3)^{n}\right] u[n] g \text { (n) } \begin{array}{ll}
x_{\mathrm{b}}[n]=-\left[3+\frac{1}{4}\left(n^{2}+n-12\right) 2^{n}\right] u[n] & \text { Read example } \\
x_{\mathrm{c}}[n]=\left[2+3.2016(5)^{n} \cos (0.9273 n-2.2455)\right] u[n] & \text { in Textbook }
\end{array}
$$

Example

Using partial fraction expansions and the Table, determine the inverse bilateral z-transform of

$$
X(z)=\frac{-z(z+0.4)}{(z-0.8)(z-2)}
$$

if the ROC is (a) $|z|>2$,
(b) $|z|<0.8$, and
(c) $0.8<|z|<2$.

Solution

$$
x_{\mathrm{a}}[n]=\left[(0.8)^{n}-2(2)^{n}\right] u[n]
$$

$$
x_{\mathrm{b}}[n]=\left[-(0.8)^{n}+2(2)^{n}\right] u[-n-1]
$$

(a)

(b)

$$
x_{\mathrm{c}}[n]=(0.8)^{n} u[n]+2(2)^{n} u[-n-1]
$$

Read z-Transform by power series expansion.

7.3

Properties of the z-Transform

Properties of z-Transform

Linear Property

$$
a x[n]+b y[n] \stackrel{\mathcal{Z}_{u}}{\Longleftrightarrow} a X(z)+b Y(z)
$$

Complex-Conjugation Property
if $x[n] \stackrel{\mathcal{Z}}{\Longleftrightarrow} X(z)$ with ROC R_{x}, then $x^{*}[n] \stackrel{\mathcal{Z}}{\Longleftrightarrow} X^{*}\left(z^{*}\right)$ with ROC R_{x}
Time Scaling Property

$$
\text { if } x[n] \stackrel{\mathcal{Z}}{\Longleftrightarrow} X(z), \text { then } x_{\uparrow}[n] \stackrel{\mathcal{Z}}{\Longleftrightarrow} X\left(z^{L}\right)
$$

$$
\gamma^{n} u[n] \longleftrightarrow \frac{z}{z-\gamma}
$$

Time-Reversal Property
if $x[n] \stackrel{\mathcal{Z}}{\Longleftrightarrow} X(z)$ with ROC R_{x}, then $x[-n] \stackrel{\mathcal{Z}}{\Longleftrightarrow} X(1 / z)$ with ROC $1 / R_{x}$

Properties of z-Transform

Bilateral z-Transform Time-Shifting Property
if $x[n] \stackrel{\mathcal{Z}}{\Longleftrightarrow} X(z)$ with ROC R_{x}, then $x[n-m] \stackrel{\mathcal{Z}}{\Longleftrightarrow} z^{-m} X(z)$ with ROC almost R_{x}
Unilateral z-Transform Time-Shifting Property
Right Shift (Delay)

$$
\begin{aligned}
& x[n-m] u[n-m] \stackrel{\mathcal{Z}_{u}}{\Longleftrightarrow} z^{-m} X(z),(m>0) \\
& x[n-m] u[n] \stackrel{\mathcal{Z}_{u}}{\Longleftrightarrow} z^{-m} X(z)+z^{-m} \sum_{n=1}^{m} x[-n] z^{n},(m>0) \\
& x[n-1] u[n] \stackrel{\mathcal{Z}_{u}}{\Longleftrightarrow} z^{-1} X(z)+x[-1] . \\
& x[n-2] u[n] \stackrel{\mathcal{Z}_{u}}{\Longleftrightarrow} z^{-2} X(z)+z^{-1} x[-1]+x[-2]
\end{aligned}
$$

Left Shift (Advance)

$$
x[n+m] u[n] \stackrel{\mathcal{Z}_{u}}{\Longleftrightarrow} z^{m} X(z)-z^{m} \sum_{n=0}^{m-1} x[n] z^{-n} \quad(m>0)
$$

 (a)

(d)

(e)

Unilateral

if $x[n] \stackrel{\mathcal{Z}}{\Longleftrightarrow} X(z)$ with ROC R_{x},
then $x[n-m] \stackrel{\mathcal{Z}}{\Longleftrightarrow} z^{-m} X(z)$ with ROC almost R_{x}

(c)

(g)

Example

Find the z-transform of the signal $x[n]$ depicted in Figure below.

Solution

$$
x[n]=n u[n]-\{(n-6) u[n-6]+6 u[n-6]\}
$$

$$
X(z)=\frac{z}{(z-1)^{2}}-\frac{1}{z^{5}(z-1)^{2}}-\frac{6}{z^{5}(z-1)}
$$

$$
n \gamma^{n} u[n] \stackrel{\mathcal{Z}}{\Longleftrightarrow} \frac{\gamma z}{(z-\gamma)^{2}}
$$

$$
X(z)=\frac{z^{6}-6 z+5}{z^{5}(z-1)^{2}}
$$

Properties of z-Transform

Z-Domain Scaling Property

If $x[n] \stackrel{\mathcal{Z}}{\Longleftrightarrow} X(z)$ with ROC R_{x},
then $\gamma^{n} x[n] \stackrel{\mathcal{Z}}{\Longleftrightarrow} X\left(\frac{z}{\gamma}\right)$ with ROC $|\gamma| R_{x}$

Z-Domain Differentiation Property

If $x[n] \stackrel{\mathcal{Z}}{\Longleftrightarrow} X(z)$ with ROC R_{x},

$$
X(z)=\sum_{n=-\infty}^{\infty} x[n] z^{-n}
$$

$$
\begin{array}{|ll|}
\hline u[n] & \longleftrightarrow \frac{z}{z-1} \\
|z|>1 \\
\gamma^{n} u[n] \longleftrightarrow \frac{z}{z-\gamma} & |z|>|\gamma|
\end{array}
$$

then $n x[n] \stackrel{\mathcal{Z}}{\Longleftrightarrow}-z \frac{d}{d z} X(z)$ with ROC R_{x}
Z-Domain Convolution Property
If $x[n] \stackrel{\mathcal{Z}}{\Longleftrightarrow} X(z)$ with ROC R_{x} and $y[n] \stackrel{\mathcal{Z}}{\Longleftrightarrow} Y(z)$ with ROC R_{y}
then $x[n] * y[n] \stackrel{\mathcal{Z}}{\Longleftrightarrow} X(z) Y(z)$ with ROC at least $R_{x} \cap R_{y}$

Properties of z-Transform

Using Convolution to find the system zero-state response

$$
\begin{gathered}
y[n]=x[n] * h[n] \\
Y(z)=X(z) H(z) \text { with ROC at least } R_{x} \cap R_{h}
\end{gathered}
$$

Bilateral z-Transform
Unilateral z-Transform

Synthesis: $x[n]=\frac{1}{2 \pi j} \oint X(z) z^{n-1} d z$ Analysis: $X(z)=\sum_{n=-\infty}^{\infty} x[n] z^{-n}, \text { ROC: } R_{x}$ Linearity: $a x[n]+b y[n] \stackrel{\mathcal{Z}}{\Longleftrightarrow} a X(z)+b Y(z),$ ROC: At least $R_{x} \cap R_{u}$ Complex Conjugation: $x^{*}[n] \stackrel{\mathcal{Z}}{\Longleftrightarrow} X^{*}\left(z^{*}\right), \text { ROC: } R_{x}$ Time Reversal: $x[-n] \stackrel{\mathcal{Z}}{\Longleftrightarrow} X(1 / z), \text { ROC: } 1 / R_{x}$ Time Shifting: $x[n-m] \stackrel{\mathcal{Z}}{\Longleftrightarrow} z^{-m} X(z), \text { ROC: Almost } R_{x}$ z-Domain Scaling: $\gamma^{n} x[n] \stackrel{\mathcal{Z}}{\Longleftrightarrow} X(z / \gamma), \text { ROC: }\|\gamma\| R_{x}$ z-Domain Differentiation: $n x[n] \stackrel{\mathcal{Z}}{\Longleftrightarrow}-z \frac{d}{d z} X(z), \text { ROC: } R_{x}$ Time Convolution: $x[n] * y[n] \stackrel{\mathcal{Z}}{\Longleftrightarrow} X(z) Y(z), \text { ROC: At least } R_{x} \cap R_{y}$	$\begin{gathered} \quad \text { Synthesis: } \\ x[n]=\frac{1}{2 \pi j} \oint X(z) z^{n-1} d z \end{gathered}$ Analysis: $X(z)=\sum_{n=0}^{\infty} x[n] z^{-n}$ Linearity: $a x[n]+b y[n] \stackrel{\mathcal{Z}_{u}}{\Longleftrightarrow} a X(z)+b Y(z)$ Complex Conjugation: $x^{*}[n] \stackrel{\mathcal{Z}_{u}}{\Longleftrightarrow} X^{*}\left(z^{*}\right)$ Time Reversal: Time Shifting: If $m>0: x[n-m] u[n-m] \stackrel{\mathcal{Z}_{u}}{\Longleftrightarrow} z^{-m} X(z)$ (general case given below) z-Domain Scaling: $\gamma^{n} x[n] \stackrel{\mathcal{Z}_{u}}{\Longleftrightarrow} X(z / \gamma)$ z-Domain Differentiation: $n x[n] \stackrel{\mathcal{Z}_{u}}{\Longleftrightarrow}-z \frac{d}{d z} X(z)$ Time Convolution: $x[n] * y[n] \stackrel{\mathcal{Z}_{u}}{\Longleftrightarrow} X(z) Y(z)$
Unilateral z-Transform Time Shifting, General Case If $m>0: x[n-m] u[n] \stackrel{Z_{u}}{\Longleftrightarrow} z^{-m} X(z)+z^{-m} \sum_{n=1}^{m} x[-n] z^{n}$ If $m<0: x[n-m] u[n] \stackrel{\mathcal{Z}_{u}}{\Longleftrightarrow} z^{-m} X(z)-z^{-m} \sum_{n=0}^{-m-1} x[n] z^{-n}$	

7.4
 z-Transform Solution of Linear Difference Equations

Example: Total Response

When initial conditions are present, the unilateral z-transform is generally the appropriate analysis tool. When only the zero-state response is required, either the bilateral or unilateral z-transform may be appropriate.

Example: Given input $x[n]=(0.5)^{n} u[n]$ and initial conditions $y[-1]=11 / 6$ and $y[-2]=37 / 36$, use the unilateral z-transform to solve the second-order $(K=2)$ constant-coefficient linear difference equation

$$
y[n+2]-5 y[n+1]+6 y[n]=3 x[n+1]+5 x[n] .
$$

Solution

$$
\begin{aligned}
\frac{Y(z)}{z} & =\frac{\left(3 z^{2}-9.5 z+10.5\right)}{(z-0.5)\left(z^{2}-5 z+6\right)} & Y(z)=\frac{26}{15}\left(\frac{z}{z-0.5}\right)-\frac{7}{3}\left(\frac{z}{z-2}\right)+\frac{18}{5}\left(\frac{z}{z-3}\right) \\
y[n] & =\left[\frac{26}{15}(0.5)^{n}-\frac{7}{3}(2)^{n}+\frac{18}{5}(3)^{n}\right] u[n] \quad & x[n+m] u[n] \stackrel{(m>0)}{\Longrightarrow}{ }^{n} z^{m} X(z)-z^{m} \sum_{n=0}^{m-1} x[n] z^{-n}
\end{aligned}
$$

Example: Zero-Input and Zero-State Components

Example: Given input $x[n]=(0.5)^{n} u[n]$ and initial conditions $y[-1]=11 / 6$ and $y[-2]=37 / 36$, use the unilateral z-transform to solve the second-order $(K=2)$ constant-coefficient linear difference equation

$$
y[n+2]-5 y[n+1]+6 y[n]=3 x[n+1]+5 x[n] .
$$

Solution

$$
\begin{aligned}
& \left(1-5 z^{-1}+6 z^{-2}\right) Y(z) \underbrace{-\left(3-11 z^{-1}\right)}_{\text {IC terms }}=\underbrace{\frac{3}{z-0.5}+\frac{5}{z(z-0.5)}}_{\text {input terms }} \\
& \left(z^{2}-5 z+6\right) Y(z)=\underbrace{z(3 z-11)}_{\text {IC terms }}+\underbrace{\frac{z(3 z+5)}{(z-0.5)}}_{\text {input terms }} \quad Y(z)=\underbrace{\frac{z(3 z-11)}{z^{2}-5 z+6}}_{\text {ZIR }}+\underbrace{\frac{z(z-0.5)\left(z^{2}-5 z+6\right)}{(z-5 z}}_{\text {ZIR }} \\
& y[n]=\underbrace{\left[5(2)^{n}-2(3)^{n}\right] u[n]}_{\text {ZSR }}+\underbrace{\left.\frac{26}{15}(0.5)^{n}-\frac{22}{3}(2)^{n}+\frac{28}{5}(3)^{n}\right] u[n]}_{\text {ZSR }}
\end{aligned}
$$

The Transfer Function and ZSR of LTID

The Difference
Equation of a System

$$
\begin{aligned}
& y[n+K]+a_{1} y[n+(K-1)]+\cdots+a_{K-1} y[n+1]+a_{K} y[n]= \\
& \quad b_{0} x[n+K]+b_{1} x[n+(K-1)]+\cdots+b_{K-1} x[n+1]+b_{K} x[n]
\end{aligned}
$$

Take the z-transform, shifting property, and setting all IC to zero the above equation will be

$$
\begin{aligned}
& \left(z^{K}+a_{1} z^{K-1}+\cdots+a_{K-1} z+a_{K}\right) Y(z)=\left(b_{0} z^{K}+b_{1} z^{K-1}+\cdots+b_{K-1} z+b_{K}\right) X(z) \\
& H(z)=\frac{Y(z)}{X(z)}=\frac{B(z)}{A(z)}=\frac{b_{0} z^{K}+b_{1} z^{K-1}+\cdots+b_{K-1} z+b_{K}}{z^{K}+a_{1} z^{K-1}+\cdots+a_{K-1} z+a_{K}} \\
& H(z)=\frac{Y(z)}{X(z)}=\frac{\mathcal{Z}\{\text { zero-state response }\}}{\mathcal{Z}\{\text { input }\}}
\end{aligned}
$$

Example for Zero-State Response

Example: Given input $x[n]=(-2)^{-n} u[n]$, use the z-transform to determine the zero-state response $y[n]$ of a causal LTID system described by the difference equation

$$
y[n+2]+y[n+1]+0.16 y[n]=x[n+1]+0.32 x[n] .
$$

Solution ROC ?
$H(z)=\frac{B(z)}{A(z)}=\frac{z+0.32}{z^{2}+z+0.16} \quad X(z)=\frac{z}{z+0.5}$
$Y(z)=X(z) H(z)=\frac{z(z+0.32)}{\left(z^{2}+z+0.16\right)(z+0.5)}$
$Y(z)=\frac{2}{3}\left(\frac{z}{z+0.2}\right)-\frac{8}{3}\left(\frac{z}{z+0.8}\right)+2\left(\frac{z}{z+0.5}\right)$
$y[n]=\left[\frac{2}{3}(-0.2)^{n}-\frac{8}{3}(-0.8)^{n}+2(-0.5)^{n}\right] u[n]$

Example with Causal and Non-causal Inputs

Example 3: Given two-sided input $x[n]=(0.8)^{n} u[n]+2(2)^{n} u[-n-1]$, use the z-transform to determine the zero-state response $y[n]$ of a causal LTID system described by the transfer function $H(z)=z /(z-0.5)$.

Solution

$$
\begin{array}{rlrl}
\mathcal{Z}\left\{(0.8)^{n} u[n]\right\} & =\frac{z}{z-0.8} \text { with ROC }|z|>0.8 \quad \mathcal{Z}\left\{2(2)^{n} u[-n-1]\right\}=-\frac{2 z}{z-2} \text { with ROC }|z|<2 \\
X(z) & =\frac{-z(z+0.4)}{(z-0.8)(z-2)}, \quad \text { ROC: } 0.8<|z|<2 \\
Y(z) & =X(z) H(z)=\frac{-z^{2}(z+0.4)}{(z-0.5)(z-0.8)(z-2)}, \quad \text { ROC: } 0.8<|z|<2 \\
Y(z) & =-\left(\frac{z}{z-0.5}\right)+\frac{8}{3}\left(\frac{z}{z-0.8}\right)-\frac{8}{3}\left(\frac{z}{z-2}\right) & \text { with ROC } 0.8<|z|<2 \\
y[n] & =\left[-(0.5)^{n}+\frac{8}{3}(0.8)^{n}\right] u[n]+\frac{8}{3}(2)^{n} u[-n-1] & \text { Read Example }
\end{array}
$$

Example with Inputs with Disjoint ROC

Example 4: For the system $H(z)=z /(z-0.5)$, find the zero-state response to the input

$$
\text { Solution } \quad x[n]=\underbrace{(0.8)^{n} u[n]}_{x_{1}[n]}+\underbrace{(0.6)^{n} u[-n-1]}_{x_{2}[n]} .
$$

$$
X_{1}(z)=\frac{z}{z-0.8} \text { with ROC }|z|>0.8 \quad X_{2}(z)=-\frac{z}{z-0.6} \text { with ROC }|z|<0.6
$$

There is no common ROC between $x_{1}[n]$ and $x_{2}[n]$ so use superposition to find the system response to both inputs separately.

$$
\begin{aligned}
& Y_{1}(z)=\frac{z^{2}}{(z-0.5)(z-0.8)}=-\frac{5}{3}\left(\frac{z}{z-0.5}\right)+\frac{8}{3}\left(\frac{z}{z-0.8}\right) \text { with ROC }|z|>0.8 \\
& Y_{2}(z)=\frac{-z^{2}}{(z-0.5)(z-0.6)}=5\left(\frac{z}{z-0.5}\right)-6\left(\frac{z}{z-0.6}\right) \text { with ROC } 0.5<|z|<0.6
\end{aligned}
$$

$y_{1}[n]=\left[-\frac{5}{3}(0.5)^{n}+\frac{8}{3}(0.8)^{n}\right] u[n] \quad y_{2}[n]=5(0.5)^{n} u[n]+6(0.6)^{n} u[-n-1] \quad$ Read Example

System Stability and the Transfer Function $H(z)$

- A causal LTID system is asymptotically stable if and only if all the characteristic roots are inside the unit circle. The roots may be simple or repeated.
- A causal LTID system is marginally stable if and only if there are no roots outside the unit circle and there are non-repeated roots on the unit circle.
- A causal LTID system is unstable if and only if at least one root is outside the unit circle, there are repeated roots on the unit circle, or both.

$$
7.5
$$

Block Diagrams and System Realization

Basic Connections

The following is true if there is no loading effect between connected subsystems.

(a)

(b)

Feedback System

Direct Form Realization

$$
H(z)=\frac{b_{0} z^{L}+b_{1} z^{L-1}+\cdots+b_{L-1} z+b_{L}}{z^{K}+a_{1} z^{K-1}+\cdots+a_{K-1} z+a_{K}}
$$

For causal systems, $L \leq K$. Multiply numerator and denominator by z^{-K}. Next express $H(z)$ as a cascade of two systems.
Example:

$$
\begin{aligned}
& H(z)=\frac{b_{0} z^{2}+b_{1} z+b_{2}}{z^{2}+a_{1} z+a_{2}} \quad H(z)=\frac{b_{0}+b_{1} z^{-1}+b_{2} z^{-2}}{1+a_{1} z^{-1}+a_{2} z^{-2}} \\
& \xrightarrow{X(z)} \xrightarrow{\frac{G(z)}{1+H(z) G(z)}} \xrightarrow{Y(z)} \\
& \xrightarrow{X(z)} H^{H}(z) \xrightarrow{W(z)} H_{2}(z) \xrightarrow{Y(z)} \xrightarrow{X(z)} H_{2}(z) \xrightarrow{V(z)} \xrightarrow{H}
\end{aligned}
$$

Direct Form I Realization

$$
\begin{array}{r}
H(z)=\underbrace{\left(b_{0}+b_{1} z^{-1}+b_{2} z^{-2}\right)}_{H_{1}(z)} \underbrace{\left(\frac{1}{1+a_{1} z^{-1}+a_{2} z^{-2}}\right)}_{H_{2}(z)} \xrightarrow{X(z)} \xrightarrow[H_{1}(z)]{W(z)} \xrightarrow{H_{2}(z)} \xrightarrow{Y(z)} \\
Y(z)=W(z)-\left(a_{1} z^{-1}+a_{2} z^{-2}\right) Y(z)
\end{array}
$$

Direct Form II Realization

$H(z)=\underbrace{\left(\frac{1}{1+a_{1} z^{-1}+a_{2} z^{-2}}\right)}_{H_{2}(z)} \underbrace{\left(b_{0}+b_{1} z^{-1}+b_{2} z^{-2}\right)}_{H_{1}(z)} \xrightarrow{X(z)} H_{H_{2}(z)}^{\xrightarrow[H_{1}(z)]{Y(z)} \xrightarrow{Y(z)}}$

$$
V(z)=X(z)-\left(a_{1} z^{-1}+a_{2} z^{-2}\right) V(z)
$$

DFII is canonic since the number of delays equal to the order of the transfer function.

Transpose Realization (TDFII)

DFII and TDFII

$$
H(z)=\frac{b_{0} z^{L}+b_{1} z^{L-1}+\cdots+b_{L-1} z+b_{L}}{z^{K}+a_{1} z^{K-1}+\cdots+a_{K-1} z+a_{K}}
$$

Direct Form II (DFII)

Transpose Direct Form II (TDFII)

Example

Find the DFII and TDFII realizations of an LTID system with transfer function

$$
H(z)=\frac{2 z-3}{4 z^{2}-1}
$$

(a)

Direct Form II

(b)

Transpose Direct Form II

Cascade and Parallel Realization

$$
H(z)=\frac{2 z-3}{4 z^{2}-1}=\frac{1 / 2(z-3 / 2)}{(z+1 / 2)(z-1 / 2)}
$$

Cascade

$$
H(z)=\underbrace{\left(\frac{1 / 2}{z+1 / 2}\right)}_{H_{1}(z)} \underbrace{\left(\frac{z-3 / 2}{z-1 / 2}\right)}_{H_{2}(z)}
$$

Parallel

$$
H(z)=\frac{1}{z+1 / 2}+\frac{-1 / 2}{z-1 / 2}
$$

$$
H_{3}(z) \quad H_{4}(z)
$$

Realization of Complex-Conjugate Roots

$$
H(z)=\frac{z^{3}+z}{16 z^{3}-28 z^{2}+20 z-6}
$$

$$
H(z)=\left(\frac{\frac{1}{16} z}{z-\frac{3}{4}}\right)\left(\frac{z+j}{z-\left(\frac{1}{2}+j \frac{1}{2}\right)}\right)\left(\frac{z-j}{z-\left(\frac{1}{2}-j \frac{1}{2}\right)}\right)
$$

Cascade

$$
H(z)=\left(\frac{\frac{1}{16} z}{z-\frac{3}{4}}\right)\left(\frac{z^{2}+1}{z^{2}-z+\frac{1}{2}}\right)
$$

Parallel

$$
H(z)=\frac{\frac{5}{16} z}{z-\frac{3}{4}}+\frac{-\frac{1}{4} z^{2}+\frac{1}{8} z}{z^{2}-z+\frac{1}{2}}
$$

Realization of Repeated Roots

For parallel connection you need to reuse some of the blocks so the number of delay equal the order of the transfer function.
Example: Determine a parallel realization of $\quad H(z)=\frac{\frac{3}{16}\left(z^{2}+1\right)}{(z+1 / 2)(z-1 / 2)^{2}}$

$$
H(z)=\frac{-\frac{3}{64}}{z-\frac{1}{2}}+\frac{\frac{15}{64}}{\left(z-\frac{1}{2}\right)^{2}}+\frac{\frac{15}{64}}{z+\frac{1}{2}}
$$

Realization of FIR Filters

For FIR filters, a_{0} is normalized to unity, and the remaining coefficients $a_{k}=0$ for all $k \neq 0$.

$$
\begin{aligned}
& y[n+K]+a_{1} y[n+(K-1)]+\cdots+a_{K-1} y[n+1]+a_{K} y[n]= \\
& \quad b_{0} x[n+K]+b_{1} x[n+(K-1)]+\cdots+b_{K-1} x[n+1]+b_{K} x[n]
\end{aligned}
$$

Example: Using direct, transposed direct, and cascade forms, realize the FIR filter

$$
y[n]=\frac{1}{2} x[n]+\frac{1}{4} x[n-1]+\frac{1}{8} x[n-2]+\frac{1}{16} x[n-3]
$$

Transposed
For cascade

$$
\begin{aligned}
& H(z)=\frac{1}{2}+\frac{1}{4} z^{-1}+\frac{1}{8} z^{-2}+\frac{1}{16} z^{-3} \\
& H(z)=\frac{\frac{1}{2} z^{3}+\frac{1}{4} z^{2}+\frac{1}{8} z+\frac{1}{16}}{z^{3}}
\end{aligned}
$$

For direct and transposed direct

$$
H(z)=\left(\frac{\frac{1}{2} z+\frac{1}{4}}{z}\right)\left(\frac{z^{2}+\frac{1}{4}}{z^{2}}\right)
$$

Cascade

Do All Realization Lead to the Same Performance?

Theoretically all realization are equivalent if parameters are implemented with infinite precision.

- The finite word-length errors that plague these implementations include coefficient quantization, overflow errors, and round-off errors.
- From a practical viewpoint, parallel and cascade forms using low-order filters minimize finite word-length effects.
- In practice, high-order filters are most commonly realized using a cascade of multiple second-order sections, which are not only easier to design but are also less susceptible to coefficient quantization and round-off errors.

7.6

Frequency Response of DiscreteTime Systems

System Response to Everlasting Sinusoid

The response of a real and asymptotically or BIBO stable LTID system to a sinusoidal input (or exponential) is the same sinusoid (exponential), modified only in gain and phase.

$$
x[n]=z_{o}^{n}=\left(\gamma e^{j \Omega_{o}}\right)^{n}
$$

$$
\begin{aligned}
x[n] & =z_{o}^{n} \longrightarrow 1 \\
& =e^{j \Omega_{o} n} \\
& =\cos \left(\Omega_{o} n+\theta\right)
\end{aligned}
$$

$$
H(z)
$$

\square

$$
y[n]=H\left(e^{j \Omega_{o}}\right) e^{j \Omega_{o} n}
$$

$$
y[n]=H\left(e^{j \Omega_{o}}\right) \cos \left(\Omega_{o} n+\theta\right)
$$

$$
y[n]=\left|H\left(e^{j \Omega_{o}}\right)\right| \cos \left(\Omega_{o} n+\theta+\angle H\left(e^{j \Omega_{o}}\right)\right)
$$

Steady-State Response to Causal Sinusoidal Inputs

$$
y_{s S}[n]=\left|H\left(e^{j \Omega}\right)\right| \cos \left[\Omega n+\theta+\angle H\left(e^{j \Omega}\right)\right] u[n]
$$

Example

Determine the frequency response $H\left(e^{j \Omega}\right)$ of the system specified by the equation

$$
y[n+1]-0.8 y[n]=x[n+1] .
$$

Determine the system responses to the inputs (a) $x_{a}[n]=1^{n}=1$, (b) $x_{b}[n]=\cos (\pi / 6 n-0.2)$, and $(\mathbf{c}) x_{c}(t)=\cos (1500 t)$ sampled using sampling interval $T=0.001$.

$$
\begin{aligned}
& \text { Solution } \\
& H(z)=\frac{1}{1-0.8 z^{-1}} \\
& H\left(e^{j \Omega}\right)=\frac{1}{1-0.8 e^{-j \Omega}}=\frac{1}{1-0.8 \cos (\Omega)+j 0.8 \sin (\Omega)}
\end{aligned}
$$

(b)
$\left|H\left(e^{j \Omega}\right)\right|=\frac{1}{\sqrt{1.64-1.6 \cos (\Omega)}} \quad$ and $\quad \angle H\left(e^{j \Omega}\right)=-\tan ^{-1}\left(\frac{0.8 \sin (\Omega)}{1-0.8 \cos (\Omega)}\right)$

Continue Example

$$
\begin{aligned}
& \left|H\left(e^{j \Omega}\right)\right|=\frac{1}{\sqrt{1.64-1.6 \cos (\Omega)}} \text { and } \angle H\left(e^{j \Omega}\right)=-\tan ^{-1}\left(\frac{0.8 \sin (\Omega)}{1-0.8 \cos (\Omega)}\right) \\
& y_{a}[n]=5 \\
& y_{b}[n]=1.983 \cos (\pi / 6 n-1.116) \\
& y_{c}[n]=0.8093 \cos (1.5 n-0.702)
\end{aligned}
$$

Omega = linspace(-2*pi,2*pi,500); H = 1./(1-0.8*exp(-1j*Omega)); subplot(121); plot(Omega,abs(H)); subplot(122); plot(Omega, angle(H));

Frequency Response from Pole-Zero Locations

$$
\begin{aligned}
& H(z)=b_{0} \frac{\left(z-z_{1}\right)\left(z-z_{2}\right) \cdots\left(z-z_{K}\right)}{\left(z-p_{1}\right)\left(z-p_{2}\right) \cdots\left(z-p_{K}\right)}=b_{0} \frac{\prod_{l=1}^{K}\left(z-z_{l}\right)}{\prod_{k=1}^{K}\left(z-p_{k}\right)} \\
& \begin{aligned}
& H\left(e^{j \Omega}\right)=\left.H(z)\right|_{z=e^{j \Omega}}=b_{0} \frac{\left(r_{1} e^{j \phi_{1}}\right)\left(r_{2} e^{j \phi_{2}}\right) \cdots\left(r_{K} e^{j \phi_{K}}\right)}{\left(d_{1} e^{j \theta_{1}}\right)\left(d_{2} e^{j \theta_{2}}\right) \cdots\left(d_{K} e^{j \theta_{K}}\right)}=b_{0} \frac{\prod_{l=1}^{K} r_{l} e^{j \phi_{l}}}{\prod_{k=1}^{K} d_{k} e^{j \theta_{k}}} \\
&=b_{0} \frac{r_{1} r_{2} \cdots r_{K}}{d_{1} d_{2} \cdots d_{K}} e^{j\left[\left(\phi_{1}+\phi_{2}+\cdots+\phi_{K}\right)-\left(\theta_{1}+\theta_{2}+\cdots+\theta_{K}\right)\right]} \\
&\left|H\left(e^{j \Omega}\right)\right|=\left|b_{0}\right| \frac{r_{1} r_{2} \cdots r_{K}}{d_{1} d_{2} \cdots d_{K}}=\left|b_{0}\right| \frac{\prod_{l=1}^{K} r_{l}}{\prod_{k=1}^{K} d_{k}} \\
&=\left|b_{0}\right| \frac{\text { product of the distances of zeros to } e^{j \Omega}}{\text { product of the distances of poles to } e^{j \Omega}}
\end{aligned}
\end{aligned}
$$

$$
\angle H\left(e^{j \Omega}\right)=\angle b_{0}+\left(\phi_{1}+\phi_{2}+\cdots \phi_{K}\right)-\left(\theta_{1}+\theta_{2}+\cdots+\theta_{K}\right)=\angle b_{0}+\sum_{l=1}^{K} \phi_{l}-\sum_{k=1}^{K} \theta_{k}
$$

$$
=\angle b_{0}+\text { sum of zero angles to } e^{j \Omega}-\text { sum of pole angles to } e^{j \Omega}
$$

- To enhance the magnitude response at a frequency Ω, place a pole close to the point $e^{i \Omega}$.
- Placing a pole or a zero at the origin does not influence the magnitude response, but it adds angle $-\Omega$ (or Ω) to the phase response $\angle \mathrm{H}\left(e^{j \Omega}\right)$.
- To suppress the magnitude response at a frequency Ω, we should place a zero close to the point $e^{j \Omega}$.
- Repeating poles or zeros further enhances their influence.
- Placing a zero close to a pole tends to cancel the effect of that pole on the frequency response (and vice versa).
- For a stable system, all the poles must be located inside the unit circle.

Example

Design a tuned (bandpass) analog filter with zero transmission at 0 Hz and also at the highest frequency $f_{\max }=500 \mathrm{~Hz}$. The resonant frequency is required to be 125 Hz .

Solution

$$
\begin{array}{lll}
\text { Solution } \\
f_{\mathrm{s}} \geq 2 f_{\max }=1000 \mathrm{~Hz} \quad \Omega=\omega T=2 \pi f / f_{s} & f & \Omega \\
& 0 & 0 \\
p_{1}=|\gamma| e^{j \pi / 4} & p_{2}=\mid \gamma 00 & \pi \\
& 125 & \pi / 4 \\
H(z)=K & (z-1)(z+1) \\
\left(z-|\gamma| e^{j \pi / 4}\right)\left(z-|\gamma| e^{-j \pi / 4}\right)
\end{array}=K \frac{z^{2}-1}{z^{2}-\sqrt{2}|\gamma| z+|\gamma|^{2}} .
$$

$$
H\left(e^{j \Omega}\right)=\left.H(z)\right|_{z=e^{j \Omega}}=K \frac{e^{j 2 \Omega}-1}{e^{j 2 \Omega}-\sqrt{2}|\gamma| e^{j \Omega}+|\gamma|^{2}}
$$

Continue Example

```
H = @(z,gamma) (z.^2-1)./(z.^2-sqrt(2)*abs(gamma)*z+(abs(gamma))^2);
T = 10^(-3); Omega = linspace(-pi,pi,1001); f = Omega/(2*pi*T); z = exp(j*Omega);
plot(f,abs(H(z,0.7)),f,abs(H(z,0.85)),f,abs(H(z,1))); axis([-500 500 -1 10]);
```

$$
H(z)=K \frac{z^{2}-1}{z^{2}-\sqrt{2}|\gamma| z+|\gamma|^{2}}
$$

Example

Design a second-order notch filter with zero transmission at 250 Hz and a sharp recovery of gain to unity on both sides of 250 Hz . The highest significant frequency to be processed is $f_{\text {max }}=400 \mathrm{~Hz}$.

Solution

$F_{s} \geq 2 f_{\text {max }}=800$ samples $/ \mathrm{sec}$
Choose $F_{s}=1000$

$$
\begin{array}{lll}
\Omega=\omega / F_{s}=2 \pi f / F_{s} & 400 & 0.8 \pi \\
& 250 & \pi / 2
\end{array}
$$

$H(z)=K \frac{(z-j)(z+j)}{(z-j|\gamma|)(z+j|\gamma|)}=K \frac{z^{2}+1}{z^{2}+|\gamma|^{2}}$
$H=@(z, g a m m a)\left(1+(a b s(g a m m a)) .^{\wedge} 2\right) / 2^{*}\left(z .^{\wedge} 2+1\right) . /\left(z .^{\wedge} 2+(a b s(\text { gamma }))^{\wedge} 2\right) ;$
T = 10^(-3); Omega = linspace(-pi,pi,1001); f = Omega/(2*pi*T); z = exp(1j*Omega); $\operatorname{plot}(f, \operatorname{abs}(H(z, 0.30)), f, \operatorname{abs}(H(z, 0.7)), f, \operatorname{abs}(H(z, 0.95))) ; \operatorname{axis}([-500500-110]) ;$

$$
7.7
$$

Finite Word-Length Effects

Read

Finite Word-Length Effects

$$
y[n]=b_{0} x[n]+b_{1} x[n-1]-a_{1} y[n-1]
$$

- Word-length is the number of bits used to represent samples of the input $x[n]$, output $y[n]$, and the parameters of the system b_{0}, b_{1}, a_{1} (filters).
- The shorter the word-length the worst the performance of the system.
- There are many available options that help minimize the adverse effects of finite word lengths.
- Cascade and parallel realizations comprised of low-order sections tend to perform better than single-section direct form realizations.
- Floating-point representations, which are generally less sensitive to finite word-length effects, can be adopted over fixed-point representations.

$$
1000,000<b_{\mathrm{o}}<1000,000
$$

$$
\begin{aligned}
& \mathrm{q}_{\mathrm{e}-16 \mathrm{~B}}=15.25 \\
& \mathrm{q}_{\mathrm{e}-32 \mathrm{~B}}=0.0002328
\end{aligned}
$$

Finite Word-Length Effects on Poles and Zeros

$$
\begin{aligned}
& H(z)=\frac{1}{\left(1-r e^{j \theta} z^{-1}\right)\left(1-r e^{-j \theta} z^{-1}\right)}=\frac{1}{1-2 r \cos (\theta) z^{-1}+r^{2} z^{-2}} \\
& \text { Now, when the system is implemented in hardware, the coefficients } \\
& -a_{1}=2 r \cos (\theta) \text { and }-a_{2}=-r^{2} \text { must be quantized. } \\
& \text { The range of } a_{1} \text { and } a_{2} \text { for stable system are }-2<a_{1}<2 \text { and } 0 \leq a_{2}<1
\end{aligned}
$$

There are relatively few pole locations found along the real axis. This means that the direct form realization will have difficulty implementing narrow-band lowpass and highpass filters, which tend to have concentrations of poles near $z=1$ and $z=-1$, respectively.

4-bit quantization

6-bit quantization

Finite Word-Length Effects on Poles and Zeros

A different design of the same system may reduce the impact of finite word-length without the need to increase the number of bits. The system parameters that need to be quantized (B-bit two's-complement signed number) are $-1<r \cos (\theta)<1$ and $-1<r \sin (\theta)<1$

4-bit quantization

6-bit quantization

$$
H(z)=\frac{1}{1-2 r \cos (\theta) z^{-1}+r^{2} z^{-2}}
$$

Finite Word-Length Effects on Frequency Response

When coefficient quantization alters a system's poles and zeros, the system's frequency response also changes, usually for the worse.

Example: A digital Chebyshev lowpass filter, which has all its zeros at $z=-1$, can be implemented as a cascade of second-order direct form sections, each with transfer function of the form

$$
H(z)=\frac{b_{0}\left(1+2 z^{-1}+z^{-2}\right)}{1+a_{1} z^{-1}+a_{2} z^{-2}}
$$

Assuming that the system operates at a sampling frequency of $F_{\mathrm{s}}=100 / \pi$, investigate the effects of 12-, 10 -, 8 -, and 6 -bit coefficient quantization on the magnitude response of the 6thorder Chebyshev lowpass filter described by

Section	b_{0}	a_{1}	a_{2}
1	0.03273793724	-1.81915463768	0.95522952077
2	0.01799913516	-1.80572713311	0.88054034430
3	0.00399530100	-1.82139792759	0.83800435313

Finite Word-Length Effects on Frequency Response

Solution:

The passband frequency $\omega_{p}=12 \mathrm{rad} / \mathrm{s}$ and the stopband frequency $\omega_{s}=15 \mathrm{rad} / \mathrm{s}$. Since the passband and stopband frequencies are both well below the folding frequency of $100 \mathrm{rad} / \mathrm{s}$, the filter is relatively narrowband, and all system poles are concentrated near $z=1$. As a result, we expect direct form realizations of the system to be somewhat more susceptible than normal to finite word-length effects.

Designating the number of quantization bits as B, each coefficient needs to be represented by an integer in the range -2^{B-1} to $2^{B-1}-1$.

$$
b_{0}=0.03273793724
$$

12-bit $1073 \times 2^{-15}=0.032745361$
8-bit $\quad 67 \times 2^{-11}=0.032714844$
6-bit $17 \times 2^{-9}=0.033203125$

Quantization	Section	b_{0}	a_{1}	a_{2}
12-bit	1	1073×2^{-15}	-1863×2^{-10}	978×2^{-10}
	2	1180×2^{-16}	-1849×2^{-10}	902×2^{-10}
	3	1047×2^{-18}	-1865×2^{-10}	858×2^{-10}
10-bit	1	268×2^{-13}	-466×2^{-8}	245×2^{-8}
	2	295×2^{-14}	-462×2^{-8}	225×2^{-8}
	3	262×2^{-16}	-466×2^{-8}	215×2^{-8}
-bit	1	67×2^{-11}	-116×2^{-6}	61×2^{-6}
	2	74×2^{-12}	-116×2^{-6}	56×2^{-6}
	3	65×2^{-14}	-117×2^{-6}	54×2^{-6}
6-bit	1	17×2^{-9}	-29×2^{-4}	15×2^{-4}
	2	18×2^{-10}	-29×2^{-4}	14×2^{-4}
	3	16×2^{-12}	-29×2^{-4}	13×2^{-4}

Finite Word-Length Effects on Frequency Response

With 12-bit word-length, coefficient quantization results in a magnitude response that matches almost the ideal magnitude response.

For 6-bit word-length the quantization of the third stage produces two poles at 0.8125 and at 1.0. These two poles will make the system unstable for dc input.

(a)

(c)

(b)

(d)

