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The Bilateral z-Transform
The z-transform is a mathematical tool in system analysis and design. It represent input x[n] as 
a sum of everlasting exponentials (complex frequency) of the form zn.
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The Bilateral z-transform: x[n] exist for positive and negative n.
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Example
Find the z-transform and the corresponding ROC for the causal signal x[n] = γn u[n].

Solution

Note: for causal signal the ROC extend outward to the centered circle.



Example
Find the z-transform and the corresponding ROC for the causal signal y[n] = -γn u[-n-1].

Solution

Note: for anti-causal signal the ROC extend inward to the centered circle.



Existence of the Bilateral z-Transform 

• The z-transform exist for any signal x[n] that grows no faster than an exponential signal rn, 
for some real and positive r.

• For a finite length sequence the ROC is the entire z-plane except zero if x[n] is nonzero for 
some positive n, and ∞ if x[n] is nonzero for some negative n.

• If z = x + y then the region of convergence for z (Rz) is at least Rx ∩ Ry.  



Example
Find the z-transform of  w[n] = x[n] + y[n] where x[n] = (0.9)n u[n] and y[n] = (1.2)n u[-n-1].
What is the z-transform of w[n] if x[n] is changed to (2)n u[n].

Solution

If x[n] is changed to (2)n u[n] then the ROC of X(z) becomes |z| > 2 and there is no common 
ROC for X and Y so the z-transform for w does not exist.



The Unilateral z-Transform
When the signal is causal, x[n] = 0 for n < 0, then the z-transform is unilateral:

Example: Determine the unilateral z-transforms of (a) xa[n] = δ[n], (b) xb[n] = u[n], 
(c) xc[n] = cos(βn)u[n], and (d) xd[n] = u[n] − u[n − 5].



The transfer function H(z) is the z-transform of 
the impulse response h[n] of an LTID system;



7.2 
The Inverse z-Transform



The Inverse z-Transform
Using the contour integral to find the inverse z-transform require the knowledge of complex 
variable theory so we will use the table and partial fraction expansions to find the inverse z-
transform. 

Read example
in Textbook

or



Example
Using partial fraction expansions and the Table, determine the inverse bilateral z-transform of

𝑋𝑋 𝑧𝑧 =
−𝑧𝑧(𝑧𝑧 + 0.4)

(𝑧𝑧 − 0.8)(𝑧𝑧 − 2)
if the ROC is (a) |z| > 2, (b) |z| < 0.8, and (c) 0.8 < |z| < 2.

Solution

Read z-Transform by power series expansion.



7.3 
Properties of the z-Transform



Properties of z-Transform
Linear Property

Complex-Conjugation Property

Time Scaling Property

Time-Reversal Property



Properties of z-Transform
Bilateral z-Transform Time-Shifting Property

Unilateral z-Transform Time-Shifting Property
Right Shift (Delay)

Left Shift (Advance)



Bilateral Unilateral



Example
Find the z-transform of the signal x[n] depicted in Figure below.

Solution



Properties of z-Transform
Z-Domain Scaling Property

Z-Domain Differentiation Property

Z-Domain Convolution Property
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Properties of z-Transform
Using Convolution to find the system zero-state response







7.4 
z-Transform Solution of Linear 

Difference Equations



Example: Total Response
When initial conditions are present, the unilateral z-transform is generally the appropriate
analysis tool. When only the zero-state response is required, either the bilateral or unilateral
z-transform may be appropriate.

Example: Given input x[n] = (0.5)nu[n] and initial conditions y[−1] = 11/6 and y[−2] = 37/36 , 
use the unilateral z-transform to solve the second-order (K = 2) constant-coefficient linear 
difference equation

y[n + 2] − 5y[n + 1]+6y[n] = 3x[n + 1]+5x[n].
Solution

Read and do the example



Example: Zero-Input and Zero-State Components
Example: Given input x[n] = (0.5)nu[n] and initial conditions y[−1] = 11/6 and y[−2] = 37/36 , 
use the unilateral z-transform to solve the second-order (K = 2) constant-coefficient linear 
difference equation

y[n + 2] − 5y[n + 1]+6y[n] = 3x[n + 1]+5x[n].
Solution



The Transfer Function and ZSR of LTID

The Difference 
Equation of a System

Take the z-transform, shifting property, and setting all IC to zero the above equation will be



Example for Zero-State Response
Example: Given input x[n] = (−2)−nu[n], use the z-transform to determine the zero-state 
response y[n] of a causal LTID system described by the difference equation

y[n + 2] + y[n + 1] + 0.16y[n] = x[n + 1] + 0.32x[n].

Solution ROC ?

x
1-1

x x
1-1

x x x
1-1



Example with Causal and Non-causal Inputs

Example 3: Given two-sided input x[n] = (0.8)nu[n] + 2(2)nu[−n − 1], use the z-transform to 
determine the zero-state response y[n] of a causal LTID system described by the transfer 
function H(z) = z / (z − 0.5).

Solution

Read Example



Example with Inputs with Disjoint ROC
Example 4: For the system H(z) = z / (z − 0.5), find the zero-state response to the input

x[n] = (0.8)nu[n] + (0.6)nu[−n − 1].

x1[n] x2[n] Solution

There is no common ROC between x1[n] and x2[n] so use superposition to find the system 
response to both inputs separately. 

Read Example



System Stability and the Transfer Function H(z)

• A causal LTID system is asymptotically stable if and only if all the characteristic roots are 
inside the unit circle. The roots may be simple or repeated.

• A causal LTID system is marginally stable if and only if there are no roots outside the unit 
circle and there are non-repeated roots on the unit circle.

• A causal LTID system is unstable if and only if at least one root is outside the unit circle, 
there are repeated roots on the unit circle, or both.



7.5 
Block Diagrams and System 

Realization



Basic Connections
The following is true if there is no loading effect between connected subsystems.

Parallel Connection

Cascade Connection

Feedback System



Direct Form Realization

For causal systems, L ≤ K. Multiply numerator and denominator by z-K. Next express H(z) 
as a cascade of two systems.

Example:

Direct Form I Direct Form II

Feedback H2(z)



Direct Form I Realization



Direct Form II Realization

DFII is canonic since the number of delays 
equal to the order of the transfer function.



Transpose Realization (TDFII)



DFII and TDFII

Direct Form II (DFII) Transpose Direct Form II (TDFII)



Example
Find the DFII and TDFII realizations of an LTID system with transfer function 

Transpose Direct Form IIDirect Form II

𝐻𝐻 𝑧𝑧 =
2𝑧𝑧 − 3

4𝑧𝑧2 − 1



Cascade and Parallel Realization

Cascade Parallel

𝐻𝐻 𝑧𝑧 =
2𝑧𝑧 − 3

4𝑧𝑧2 − 1

𝐻𝐻 𝑧𝑧 =
1/2

𝑧𝑧 + 1/2
𝑧𝑧 − 3/2
𝑧𝑧 − 1/2

H1(z) H2(z) 

𝐻𝐻 𝑧𝑧 =
1

𝑧𝑧 + 1/2
+

−1/2
𝑧𝑧 − 1/2

H3(z) H4(z) 

=
1/2 𝑧𝑧 − 3/2

𝑧𝑧 + 1/2 𝑧𝑧 − 1/2



Realization of Complex-Conjugate Roots

Parallel

𝐻𝐻 𝑧𝑧 =
𝑧𝑧3 + 𝑧𝑧

16𝑧𝑧3 − 28𝑧𝑧2 + 20𝑧𝑧 − 6

Cascade



Realization of Repeated Roots

𝐻𝐻 𝑧𝑧 =
3

16 𝑧𝑧2 + 1
𝑧𝑧 + 1/2 𝑧𝑧 − 1/2 2

For parallel connection you need to reuse some of the blocks so the number of delay equal the 
order of the transfer function.

Example: Determine a parallel realization of 



Realization of FIR Filters
For FIR filters, a0 is normalized to unity, and the remaining coefficients ak = 0 for all k ≠ 0.

Example: Using direct, transposed direct, and cascade 
forms, realize the FIR filter

𝐻𝐻 𝑧𝑧 =
1
2 𝑧𝑧

3 + 1
4 𝑧𝑧

2 + 1
8 𝑧𝑧 + 1

16
𝑧𝑧3

𝐻𝐻 𝑧𝑧 =
1
2

+
1
4
𝑧𝑧−1 +

1
8
𝑧𝑧−2 +

1
16

𝑧𝑧−3For direct and 
transposed direct

For cascade

𝑦𝑦 𝑛𝑛 =
1
2 𝑥𝑥 𝑛𝑛 +

1
4 𝑥𝑥 𝑛𝑛 − 1 +

1
8 𝑥𝑥 𝑛𝑛 − 2 +

1
16 𝑥𝑥[𝑛𝑛 − 3]



Do All Realization Lead to the Same Performance?
Theoretically all realization are equivalent if parameters are implemented with infinite precision.

• The finite word-length errors that plague these implementations include coefficient 
quantization, overflow errors, and round-off errors. 

• From a practical viewpoint, parallel and cascade forms using low-order filters minimize 
finite word-length effects. 

• In practice, high-order filters are most commonly realized using a cascade of multiple 
second-order sections, which are not only easier to design but are also less susceptible to 
coefficient quantization and round-off errors. 



7.6 
Frequency Response of Discrete-

Time Systems



System Response to Everlasting Sinusoid
The response of a real and asymptotically or BIBO stable LTID system to a sinusoidal input (or 
exponential) is the same sinusoid (exponential), modified only in gain and phase.

Steady-State Response to Causal Sinusoidal Inputs

H(z)𝑥𝑥 𝑛𝑛 = 𝑧𝑧𝑜𝑜𝑛𝑛

= 𝑒𝑒𝑗𝑗Ω𝑜𝑜𝑛𝑛
𝑦𝑦 𝑛𝑛 = 𝐻𝐻(𝑧𝑧𝑜𝑜)𝑧𝑧𝑜𝑜𝑛𝑛

= cos Ω𝑜𝑜𝑛𝑛 + 𝜃𝜃

𝑦𝑦 𝑛𝑛 = 𝐻𝐻 𝑒𝑒𝑗𝑗Ω𝑜𝑜 𝑒𝑒𝑗𝑗Ω𝑜𝑜𝑛𝑛

𝑦𝑦 𝑛𝑛 = 𝐻𝐻 𝑒𝑒𝑗𝑗Ω𝑜𝑜 cos Ω𝑜𝑜𝑛𝑛 + 𝜃𝜃

𝑦𝑦 𝑛𝑛 = 𝐻𝐻 𝑒𝑒𝑗𝑗Ω𝑜𝑜 cos Ω𝑜𝑜𝑛𝑛 + 𝜃𝜃 + ∠𝐻𝐻 𝑒𝑒𝑗𝑗Ω𝑜𝑜

𝑦𝑦𝑠𝑠𝑠𝑠 𝑛𝑛 = 𝐻𝐻 𝑒𝑒𝑗𝑗Ω cos Ω𝑛𝑛 + 𝜃𝜃 + ∠𝐻𝐻 𝑒𝑒𝑗𝑗Ω 𝑢𝑢[𝑛𝑛]

𝑥𝑥 𝑛𝑛 = 𝑧𝑧𝑜𝑜𝑛𝑛 = 𝛾𝛾𝑒𝑒𝑗𝑗Ω𝑜𝑜 𝑛𝑛



Example
Determine the frequency response H(ejΩ) of the system specified by the equation

y[n + 1] − 0.8y[n] = x[n + 1].
Determine the system responses to the inputs (a) xa[n] = 1n = 1, (b) xb[n] = cos( π/6 n − 0.2), 
and (c) xc(t) = cos(1500t) sampled using sampling interval T = 0.001.

Solution

𝐻𝐻 𝑧𝑧 =
1

1 − 0.8𝑧𝑧−1

𝐻𝐻 𝑒𝑒𝑗𝑗Ω =
1

1 − 0.8𝑒𝑒−𝑗𝑗Ω
=

1
1 − 0.8cos(Ω) + 𝜋𝜋𝑗.8sin(Ω)



Continue Example

ya[n] = 5 

yb[n] = 1.983 cos( π/6 n − 1.116)

yc[n] = 0.8093 cos( 1.5 n − 0.702)

Omega = linspace(-2*pi,2*pi,500); H = 1./(1-0.8*exp(-1j*Omega));
subplot(121); plot(Omega,abs(H)); subplot(122); plot(Omega,angle(H));



Frequency Response from Pole-Zero Locations



• To enhance the magnitude response at a 
frequency Ω, place a pole close to the 
point ejΩ.

• Placing a pole or a zero at the origin 
does not influence the magnitude 
response, but it adds angle −Ω (or Ω) to 
the phase response ∠H(ejΩ).

• To suppress the magnitude response at 
a frequency Ω, we should place a zero 
close to the point ejΩ.

• Repeating poles or zeros further 
enhances their influence.

• Placing a zero close to a pole tends to 
cancel the effect of that pole on the 
frequency response (and vice versa).

• For a stable system, all the poles must 
be located inside the unit circle.



Example
Design a tuned (bandpass) analog filter with zero transmission at 0 Hz 
and also at the highest frequency fmax = 500 Hz. The resonant frequency 
is required to be 125 Hz.
Solution

fs ≥ 2fmax = 1000 Hz Ω = ωT = 2πf/fs

f Ω
0 0
500 π
125 π/4p1= |γ|ejπ/4 p2= |γ|e-jπ/4



Continue Example
H = @(z,gamma) (z.^2-1)./(z.^2-sqrt(2)*abs(gamma)*z+(abs(gamma))^2);
T = 10^(-3); Omega = linspace(-pi,pi,1001); f = Omega/(2*pi*T); z = exp(j*Omega);
plot(f,abs(H(z,0.7)),f,abs(H(z,0.85)),f,abs(H(z,1))); axis([-500 500 -1 10]);



Example
Design a second-order notch filter with zero transmission at 250 Hz and a sharp recovery of 
gain to unity on both sides of 250 Hz. The highest significant frequency to be processed is  
fmax = 400 Hz.

Solution

Ω = ω / Fs = 2πf / Fs

f Ω
0 0
400 0.8π
250 π/2

Fs ≥ 2fmax = 800 samples/sec

Choose Fs = 1000

H = @(z,gamma) (1+(abs(gamma)).^2)/2*(z.^2+1)./(z.^2+(abs(gamma))^2);
T = 10^(-3); Omega = linspace(-pi,pi,1001); f = Omega/(2*pi*T); z = exp(1j*Omega);
plot(f,abs(H(z,0.30)),f,abs(H(z,0.7)),f,abs(H(z,0.95))); axis([-500 500 -1 10]);



7.7 
Finite Word-Length Effects

Read



Finite Word-Length Effects

• Word-length is the number of bits used to represent samples of the input x[n],  output y[n], 
and the parameters of the system bo, b1, a1 (filters). 

• The shorter the word-length the worst the performance of the system. 
• There are many available options that help minimize the adverse effects of finite word 

lengths.
• Cascade and parallel realizations comprised of low-order sections tend to perform better 

than single-section direct form realizations. 
• Floating-point representations, which are generally less sensitive to finite word-length 

effects, can be adopted over fixed-point representations.

y[n] = box[n] + b1x[n – 1] – a1y[n – 1]

1000,000 < bo< 1000,000
qe-16B = 15.25
qe-32B = 0.0002328



Finite Word-Length Effects on Poles and Zeros

Now, when the system is implemented in hardware, the coefficients 
−a1 = 2r cos(θ) and −a2 = −r2 must be quantized.
The range of a1 and a2 for stable system are  -2 < a1 < 2 and 0 ≤ a2 < 1

4-bit quantization 6-bit quantization

There are relatively few pole 
locations found along the real axis. 
This means that the direct form 
realization will have difficulty 
implementing narrow-band lowpass
and highpass filters, which tend to 
have concentrations of poles near 
z = 1 and z = −1, respectively.



Finite Word-Length Effects on Poles and Zeros
A different design of the same system may reduce the impact of finite word-length without the 
need to increase the number of bits. The system parameters that need to be quantized (B-bit 
two’s-complement signed number) are -1 < r cos(θ) < 1 and -1 < r sin(θ) < 1 

4-bit quantization 6-bit quantization



Finite Word-Length Effects on Frequency Response
When coefficient quantization alters a system’s poles and zeros, the system’s frequency 
response also changes, usually for the worse.

Example: A digital Chebyshev lowpass filter, which has all its zeros at z = −1, can be 
implemented as a cascade of second-order direct form sections, each with transfer function of 
the form

𝐻𝐻 𝑧𝑧 =
𝑏𝑏0(1 + 2𝑧𝑧−1 + 𝑧𝑧−2)
1 + 𝑎𝑎1𝑧𝑧−1 + 𝑎𝑎2𝑧𝑧−2

Assuming that the system operates at a sampling frequency of Fs = 100/π , investigate the 
effects of 12-, 10-, 8-, and 6-bit coefficient quantization on the magnitude response of the 6th-
order Chebyshev lowpass filter described by



Finite Word-Length Effects on Frequency Response
Solution:
The passband frequency ωp = 12 rad/s and the stopband frequency ωs = 15 rad/s. Since the 
passband and stopband frequencies are both well below the folding frequency of 100 rad/s, 
the filter is relatively narrowband, and all system poles are concentrated near z = 1. As a 
result, we expect direct form realizations of the system to be somewhat more susceptible 
than normal to finite word-length effects. 

Designating the number of quantization 
bits as B, each coefficient needs to be 
represented by an integer in the range 
−2B−1 to 2B−1−1.

b0 = 0.03273793724
12-bit 1073×2-15 = 0.032745361
8-bit 67×2-11 = 0.032714844
6-bit 17×2-9 = 0.033203125



Finite Word-Length Effects on Frequency Response
With 12-bit word-length, coefficient quantization results in a magnitude response that matches 
almost the ideal magnitude response.

For 6-bit word-length the 
quantization of the third stage 
produces two poles at 0.8125 and 
at 1.0. These two poles will make 
the system unstable for dc input.
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