Digital Signal Processing ENGR 4333/5333

Test 2

Date:

Time:

Name:

Q1) Use convolution definition to find the zero-state response y[n] for the input x[n] = 2u[n] of an LTID system described by the impulse response $h[n] = (0.3)^n u[n]$.

Q2) For the LTID system descripted by the impulse response

 $h[n] = (0.6)^n u[n].$

- a) Determine the frequency response $H(\Omega)$ of the system using the DTFT definition.
- b) Determine the zero-state response y[n] for the everlasting input $x[n] = \cos(0.5\pi n)$.

Q3) For the LTID system specified by the difference equation

y[n] - 0.81y[n-2] = x[n-3].

- a) Determine the frequency response $H(\Omega)$ of the system
- b) Determine the zero-state response y[n] for the input $x[n] = (0.8)^n u[n]$

Q4) The DTFT of the input $X(\Omega)$ and the frequency response of the system $H(\Omega)$ are shown below

$$X(\Omega) = \frac{0.5e^{j\Omega}}{\left(e^{j\Omega} - 0.5\right)^2} \qquad \qquad H(\Omega) = e^{-j3\Omega}$$

a) Find $Y(\Omega)$

- b) Find y[n]
- c) What does the system $H(\Omega)$ do to the input?

Q5) For the signal $x[n] = 3/16 \operatorname{sinc}(3n/16)$,

- a) Find the M = 2 down sampled signal $x_{\downarrow}[n]$.
- b) What is the maximum factor *M* that still permits lossless (no aliasing) down sampling?
- c) Find the spectrum $X_{\downarrow}(\Omega)$ from $X(\Omega)$