
O n November 25, 1998, Walt Disney Pictures
and Pixar Animation Studios released a full-
length computer-animated feature film called

A Bug’s Life.  It was the second such collaboration for
Disney and Pixar and, like its groundbreaking predeces-
sor Toy Story three years earlier, it opened to rave
reviews.  A Bug’s Life, said one reviewer, “teems with
beautiful visual inventions…; with intricate details
that will keep adults as well as kids bug-eyed from start
to finish…; and with colors teased from some new, 
hitherto-secret pastel spectrum…”

Only the most computer graphics-savvy moviegoers
would have given any thought to the mathematical mod-
eling techniques that made it possible to develop all the
characters in the animated ants’ story—not to mention
their many textures, their myriad expressions, and the
way they jumped, flitted, and buzzed around.  As it
happened, though, a particular type of modeling tech-
nique made its debut in the movie, a method of computer
animation that makes use of a collection of mathemati-
cal procedures called “wavelets.”

One way of thinking about wavelets is to consider
how our eyes look at the world.  In the real world, you
can observe a forest like the
one shown in the photograph
on the next page from many
vantage points—in effect, at
different scales of resolution.
From the window of a cross-
country jet, for example, the
forest appears to be a solid
canopy of green.  From the
window of an automobile on
the ground, the canopy resolves
into individual trees, and if

you get out of the car and move closer, you begin to see
branches and leaves.  If you then pull out a magnifying
glass, you might find a drop of dew at the end of a leaf.
As you zoom in at smaller and smaller scales, you can
find details that you didn’t see before.  Try to do that
with a photograph, however, and you will be disappoint-
ed.  Enlarge the photograph to get “closer” to a tree and
all you’ll have is a fuzzier tree; the branch, the leaf, the
drop of dew are not to be found.  Although our eyes can
see the forest at many scales of resolution, the camera can
show only one at a time.  

Computers do no better than cameras; in fact, their
level of resolution is inferior.  On a computer screen, the
photograph becomes a collection of pixels that are much
less sharp than the original. 

Soon, however, computers everywhere will be able to do
something that photographers have only been able to dream
of.  They will be able to display an interactive image of 
a forest in which the viewer can zoom in to get greater
detail of the trees, branches, and perhaps even the leaves.
They will be able to do this because wavelets make it possi-
ble to compress the amount of data used to store an image,
allowing a more detailed image to be stored in less space. 

Even though as an orga-
nized research topic wavelets 
is less than two decades old, it
arises from a constellation 
of related concepts developed
over a period of nearly two

WAVELETS
SEEING THE FOREST –  AND THE TREES

N A T I O N A L A C A D E M Y O F S C I E N C E S

BEYOND DISCOVERYBEYOND DISCOVERY
TM

Flik and the other characters in
the movie, A Bug’s Life, were 
generated by a method of comput-
er animation that uses wavelets.  
(© Disney Enterprises, Inc./
Pixar Animation Studios)

THE PATH FROM RESEARCH TO HUMAN BENEFIT



centuries, repeatedly rediscovered by scientists who wanted
to solve technical problems in their various disciplines.
Signal processors were seeking a way to transmit clear
messages over telephone wires.  Oil prospectors wanted a
better way to interpret seismic traces.  Yet “wavelets” did
not become a household word among scientists until the
theory was liberated from the diverse applications in
which it arose and was synthesized into a purely mathe-
matical theory.  This synthesis, in turn, opened scientists’
eyes to new applications.  Today, for example, wavelets are
not only the workhorse in computer imaging and anima-
tion; they also are used by the FBI to encode its data base
of 30 million fingerprints.  In the future, scientists may
put wavelet analysis to work diagnosing breast cancer,
looking for heart abnormalities, or predicting the weather.

Transforming Reality

Wavelet analysis allows researchers to isolate and
manipulate specific types of patterns hidden in masses
of data, in much the same way our eyes can pick out
the trees in a forest, or our ears can pick out the flute 
in a symphony.  One approach to understanding 
how wavelets do this is to start with the difference
between two kinds of sounds—a tuning fork and the
human voice.  Strike a tuning fork and you get a pure
tone that lasts for a very long time.  In mathematical
theory, such a tone is said to be “localized” in frequen-
cy; that is, it consists of a single note with no higher-fre-
quency overtones.  A spoken word, by contrast, lasts for
only a second, and thus is “localized” in time.  It is not
localized in frequency because the word is not a single
tone but a combination of many different frequencies.

Graphs of the sound waves produced by the tun-
ing fork and human voice highlight the difference, as
illustrated on page 3.  The vibrations of the tuning
fork trace out what mathematicians call a sine wave,
a smoothly undulating curve that, in theory, could
repeat forever.  In contrast, the graph of the word
“greasy” contains a series of sharp spikes; there are 
no oscillations. 

In the nineteenth century, mathematicians perfect-
ed what might be called the “tuning fork” version of
reality, a theory known as Fourier analysis.  Jean
Baptiste Joseph Fourier, a French mathematician,
claimed in 1807 that any repeating waveform (or
periodic function), like the tuning fork sound wave,
can be expressed as an infinite sum of sine waves and
cosine waves of various frequencies.  (A cosine wave 
is a sine wave shifted forward a quarter cycle.) 

A familiar demonstration of Fourier’s theory occurs
in music.  When a musician plays a note, he or she 
creates an irregularly shaped sound wave.  The same
shape repeats itself for as long as the musician holds
the note.  Therefore, according to Fourier, the note
can be separated into a sum of sine and cosine waves.
The lowest-frequency wave is called the fundamental
frequency of the note, and the higher-frequency ones
are called overtones.  For example, the note A, played
on a violin or a flute, has a fundamental frequency of
440 cycles per second and overtones with frequencies
of 880, 1320, and so on.  Even if a violin and a flute
are playing the same note, they will sound different
because their overtones have different strengths or
“amplitudes.”  As music synthesizers demonstrated in
the 1960s, a very convincing imitation of a violin or a
flute can be obtained by re-combining pure sine waves
with the appropriate amplitudes.  That, of course, is
exactly what Fourier predicted back in 1807.

Mathematicians later extended Fourier’s idea to
non-periodic functions (or waves) that change over
time, rather than repeating in the same shape forever.
Most real-world waves are of this type: say, the sound
of a motor that speeds up, slows down, and hiccups
now and then.  In images, too, the distinction
between repeating and non-repeating patterns is
important.  A repeating pattern may be seen as a tex-
ture or background, while a non-repeating one is
picked out by the eye as an object.  Periodic or repeat-
ing waves composed of a discrete series of overtones
can be used to represent repeating (background) pat-
terns in an image. Non-periodic features can be
resolved into a much more complex spectrum of 
frequencies, called the “Fourier transform,” just as
sunlight can be separated into a spectrum of colors.

B E Y O N D  D I S C O V E R Y                   w w w . b e y o n d d i s c o v e r y . o r g2

This photo captures the forest at one scale of resolution.  Soon
computers everywhere will be able to display interactive images
in which viewers can zoom in to see greater detail of the trees,
branches, and leaves. (Gerry Ellis/Minden Pictures)



The Fourier transform portrays the structure of a peri-
odic wave in a much more revealing and concentrated
form than a traditional graph of a wave would.  For
example, a rattle in a motor will show up as a peak at
an unusual frequency in the Fourier transform.

Fourier transforms have been a hit.  During the
nineteenth century they solved many problems in
physics and engineering.  This prominence led scien-
tists and engineers to think of them as the preferred
way to analyze phenomena of all kinds.  This ubiquity
forced a close examination of the method.  As a result,
throughout the twentieth century, mathematicians,
physicists, and engineers came to realize a drawback of
the Fourier transform: they have trouble reproducing
transient signals or signals with abrupt changes, such
as the spoken word or the rap of a snare drum.  Music
synthesizers, as good as they are, still do not match the
sound of concert violinists, because the playing of a
violinist contains transient features—such as the con-
tact of the bow on the string—that are poorly imitated
by representations based on sine waves.

The principle underlying this problem can be 
illustrated by what is known as the Heisenberg
Indeterminacy Principle.  In 1927, the physicist Werner
Heisenberg stated that the position and the velocity of
an object cannot both be measured exactly at the same
time even in theory.  In signal processing terms, this
means it is impossible to know simultaneously the exact
frequency and the exact time of occurrence of this fre-
quency in a signal. In order to know its frequency, the
signal must be spread in time, or vice versa.  In musical
terms, the trade-off means that any signal with a short
duration must have a complicated frequency spectrum
made of a rich variety of sine waves, whereas any signal
made from a simple combination of a few sine waves
must have a complicated appearance in the time
domain.  Thus, we can’t expect to reproduce the sound
of a drum with an orchestra of tuning forks.

An Idea with No Name

Over the course of the twentieth century, scien-
tists in different fields struggled to get around these
limitations, in order to allow representations of the
data to adapt to the nature of the information.  In
essence, they wanted to capture both the low-resolu-
tion forest—the repeating background signal—and
the high-resolution trees—the individual, localized
variations in the background.  Although the scientists
were each trying to solve the problems particular to
their respective fields, they began to arrive at the
same conclusion—namely, that Fourier transforms
themselves were to blame.  They also arrived at
essentially the same solution: Perhaps by splitting a
signal up into components that were not pure sine
waves, it would be possible to condense the informa-
tion in both the time and frequency domains.  This is
the idea that would ultimately be known as wavelets. 

The first entrant in the wavelet derby was a
Hungarian mathematician named Alfred Haar, who
introduced in 1909 the functions that are now called
“Haar wavelets.”  These functions consist simply of a
short positive pulse followed by a short negative pulse.
An example is shown on page 5.  Although the short
pulses of Haar wavelets are excellent for teaching
wavelet theory, they are less useful for most applications
because they yield jagged lines instead of smooth curves.
For example, an image reconstructed with Haar wavelets
looks like a cheap calculator display, and a Haar wavelet
reconstruction of the sound of a flute is too harsh.

From time to time over the next several decades,
other precursors of wavelet theory arose.  In the
1930s, the English mathematicians John Littlewood
and R.E.A.C. Paley developed a method of grouping
frequencies by octaves, thereby creating a signal that is
well localized in frequency (its spectrum lies within
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Graphs of the sound-
waves produced by a
tuning fork (left)
and the spoken word
“greasy” (right) illus-
trate the difference
between a tone local-
ized in frequency and
one localized in time.
The tuning fork pro-
duces a simple “sine
wave.” (Courtesy of
Ofer Levi, Stanford
University)



one octave) and also relatively well localized in time.
In 1946, Dennis Gabor, a British-Hungarian physicist,
introduced the Gabor transform, analogous to the
Fourier transform, which separates a wave into “time-
frequency packets” or “coherent states” that have the
greatest possible simultaneous localization in both
time and frequency.  And in the 1970s and 1980s, the
signal processing and image processing communities
introduced their own versions of wavelet analysis,
going by such names as “subband coding,” “quadra-
ture mirror filters,” and the “pyramidal algorithm.” 

While not precisely identical, all of these tech-
niques had similar features.  They decomposed or
transformed signals into pieces that could be localized
to any time interval and could also be dilated or con-
tracted to analyze the signal at different scales of reso-
lution.  These precursors of wavelets had one other
thing in common: No one knew about them beyond
individual specialized communities.  But in 1984,
wavelet theory finally came into its own.

The Great Synthesis

Jean Morlet didn’t plan to start a scientific revolu-
tion.  He was merely trying to give geologists a better
way to search for oil.

Petroleum geologists usually locate underground oil
deposits by making loud noises.  Because sound waves
travel through different materials at different speeds,
geologists can infer what kind of material lies under the
surface by sending seismic waves into the ground and
measuring how quickly they rebound.  If the waves
propagate especially quickly through one layer, it may
be a salt dome, which can trap a layer of oil underneath.

Figuring out just how the geology translates into a
sound wave (or vice versa) is a tricky mathematical prob-
lem, and one that engineers traditionally solve with
Fourier analysis.  Unfortunately, seismic signals contain
lots of transients—abrupt changes in the wave as it pass-
es from one rock layer to another.  These transients con-
tain exactly the information the geologist is looking for,
namely the location of the rock layers, but Fourier analy-
sis spreads that spatial information out all over the place.

Morlet, an engineer for Elf-Aquitaine, developed 
his own way of analyzing the seismic signals to create
components that were localized in space, which he
called “wavelets of constant shape.”  Later, they would
be known as “Morlet wavelets.”  Whether the compo-
nents are dilated, compressed, or shifted in time, they
maintain the same shape.  Other families of wavelets can
be built by taking a different shape, called a mother
wavelet, and dilating, compressing, or shifting it in time.
Researchers would find that the exact shape of the
mother wavelet strongly affects the accuracy and com-
pression properties of the approximation.  Many of the

1930
John Littlewood and R.A.E.C.
Paley, of Cambridge University,
show that local information about
a wave, such as the timing of a
pulse of energy, can be retrieved
by grouping the terms of its
Fourier series into “octaves.” 

1807
Jean Baptiste Joseph Fourier
claims that any periodic function,
or wave, can be expressed as an
infinite sum of sine and cosine
waves of various frequencies.
Because of serious doubts over
the correctness of his arguments,
his paper is not published until
15 years later.

1909
Alfred Haar, a Hungarian
mathematician, discovers a
“basis” of functions that are
now recognized as the first
wavelets.  They consist of a
short positive pulse followed
by a short negative pulse.

Timeline
Wavelets have had an unusual scientific history, marked by many independent discoveries and rediscoveries.  

The most rapid progress has come since the early 1980s, when a coherent mathematical theory of wavelets finally emerged.

1981
Petroleum engineer Jean Morlet of
Elf-Aquitaine finds a way to decom-
pose seismic signals into what he
calls “wavelets of constant shape.”
He turns to quantum physicist Alex
Grossmann for help in proving that
the method works.

1946
Dennis (Denes) Gabor, a
British-Hungarian physicist
who invented holography,
decomposes signals into
“time-frequency packets” 
or “Gabor chirps.” 

1976
IBM physicists Claude
Galand and Daniel
Esteban discover subband
coding, a way of encoding
digital transmissions for
the telephone. 

1984
Joint paper by Morlet 
and Grossmann brings
the word “wavelet” into
the mathematical lexicon
for the first time.



differences between earlier versions of wavelets simply
amounted to different choices for the mother wavelet.

Morlet’s method wasn’t in the books, but it seemed
to work.  On his personal computer, he could separate a
wave into its wavelet components, and then reassemble
them into the original wave.  But he wasn’t satisfied
with this empirical proof, and began asking other scien-
tists if the method was mathematically sound.

Morlet found the answer he wanted from Alex
Grossmann, a physicist at the Centre de Physique
Théorique in Marseilles.  Grossmann worked with

Morlet for a year to confirm that waves could be
reconstructed from their wavelet decompositions.  
In fact, wavelet transforms turned out to work better
than Fourier transforms, because they are much less
sensitive to small errors in the computation.  An error
or an unwise truncation of the Fourier coefficients
can turn a smooth signal into a jumpy one or vice
versa; wavelets avoid such disastrous consequences.

Morlet and Grossmann’s paper, the first to use the
word “wavelet,” was published in 1984.  Yves Meyer,
currently at the École Normale Supérieure de Cachan,
widely acknowledged as one of the founders of
wavelet theory, heard about their work in the fall of
the same year.  He was the first to realize the connec-
tion between Morlet’s wavelets and earlier mathemati-
cal wavelets, such as those in the work of Littlewood
and Paley.  (Indeed, Meyer has counted 16 separate
rediscoveries of the wavelet concept before Morlet
and Grossmann’s paper.)

Meyer went on to discover a new kind of wavelet,
with a mathematical property called orthogonality that
made the wavelet transform as easy to work with and
manipulate as a Fourier transform.  (“Orthogonality”
means that the information captured by one wavelet is
completely independent of the information captured
by another.)  Perhaps most importantly, he became the
nexus of the emerging wavelet community. 

In 1986, Stéphane Mallat, a former student of
Meyer’s who was working on a doctorate in computer

1986
Stéphane Mallat, then at the
University of Pennsylvania, shows
that the Haar basis, the Littlewood-
Paley octaves, the Gabor chirps,
and the subband filters of Galand
and Esteban are all related to
wavelet-based algorithms. 

1985
Yves Meyer of the
University of Paris 
discovers the first
smooth orthogonal
wavelets.

1987
Ingrid Daubechies constructs
the first smooth orthogonal
wavelets with compact support.
Her wavelets turn the theory
into a practical tool that can be
easily programmed and used
by any scientist with a mini-
mum of mathematical training.

1992
The FBI chooses a wavelet
method developed by Tom
Hopper of the FBI’s Criminal
Justice Information Services
Division and Jonathan Bradley
and Chris Brislawn from Los
Alamos National Laboratory,
to compress its enormous
database of fingerprints. 

1995
Pixar Studios releases the movie
Toy Story, the first fully computer-
animated cartoon.  In the sequel,
Toy Story 2, some shapes are 
rendered by subdivision surfaces,
a technique mathematically 
related to wavelets.

1999
The International Standards
Organization approves a new
standard for digital picture 
compression, called JPEG-2000.
The new standard uses wavelets
to compress image files by 
1:200 ratios with no visible loss
in image quality.  Web browsers
are expected to support the new
standard by 2001. 

1990
David Donoho and Iain
Johnstone, at Stanford
University, use wavelets
to “denoise” images,
making them even sharper
than the originals.

Graphs of several different types of wavelets. (a) Haar
Wavelet, (b) Morlet Wavelet (c) Daubechies Wavelet. 
(Courtesy of Ofer Levi, Stanford University)
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vision, linked the theory of wavelets to the existing liter-
ature on subband coding and quadrature mirror filters,
which are the image processing community’s versions 
of wavelets.  The idea of multiresolution analysis—that
is, looking at signals at different scales of resolution—
was already familiar to experts in image processing.
Mallat, collaborating with Meyer, showed that wavelets
are implicit in the process of multiresolution analysis.

Thanks to Mallat’s work, wavelets became much
easier.  One could now do a wavelet analysis without
knowing the formula for a mother wavelet.  The
process was reduced to simple operations of averaging
groups of pixels together and taking their differences,
over and over.  The language of wavelets also became
more comfortable to electrical engineers, who
embraced familiar terms such as “filters,” “high 
frequencies,” and “low frequencies.” 

The final great salvo in the wavelet revolution was
fired in 1987, when Ingrid Daubechies, while visiting
the Courant Institute at New York University and later
during her appointment at AT&T Bell Laboratories,
discovered a whole new class of wavelets, which were
not only orthogonal (like Meyer’s) but which could be
implemented using simple digital filtering ideas, in
fact, using short digital filters.  The new wavelets were
almost as simple to program and use as Haar wavelets,
but they were smooth without the jumps of Haar
wavelets.  Signal processors now had a dream tool: a
way to break up digital data into contributions of vari-
ous scales.  Combining Daubechies and Mallat’s ideas,
there was a simple, orthogonal transform that could be

rapidly computed on modern digital computers.
The Daubechies wavelets have surprising features—

such as intimate connections with the theory of frac-
tals.  If their graph is viewed under magnification,
characteristic jagged wiggles can be seen, no matter
how strong the magnification.  This exquisite com-
plexity of detail means there is no simple formula for
these wavelets.  They are ungainly and asymmetric;
nineteenth-century mathematicians would have
recoiled from them in horror.  But like the Model-T
Ford, they are beautiful because they work.  The
Daubechies wavelets turn the theory into a practical
tool that can be easily programmed and used by any
scientist with a minimum of mathematical training.

How Do Wavelets Work?

So far, the “killer app” for wavelets has been digital
image compression.  They are central to the new JPEG-
2000 digital image standard and the WSQ (wavelet
scalar quantization) method that the FBI uses to com-
press its fingerprint database.  In this context, wavelets
can be thought of as the building blocks of images.  
An image of a forest can be made from the broadest
wavelets: a big swath of green for the forest, a splash of
blue for the sky.  More detailed, sharper wavelets can
help distinguish one tree from another.  Branches and
needles can be added to the image with even finer
wavelets.  Like an individual brush stroke in a painting,
each wavelet is not itself an image, but many wavelets
together can recreate anything.  Unlike a brush stroke
in a painting, a wavelet can be made arbitrarily small: A
wavelet has no physical size limitations because it is sim-
ply a series of 0s and 1s stored in a computer’s memory.

Contrary to popular belief, wavelets themselves do
not compress an image: Their job is to make compres-
sion possible.  To understand why, suppose that an
image is encoded as a series of spatially arranged num-
bers, such as 1, 3, 7, 9, 8, 8, 6, 2.  If each number
represents the darkness of a pixel, with 0 being white
and 15 being black, then this string represents some
kind of gray object (the 7s, 8s, and 9s) against a light
background (the 1s, 2s, and 3s).

The simplest kind of multiresolution analysis filters
the image by averaging each pair of adjacent pixels.
In the above example, this results in the string 2, 8, 8,
4: a lower-resolution image that still shows a grayish
object against a light background.  If we wanted to
reconstruct a degraded version of the original image
from this, we could do so by repeating each number
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Wavelets can be used to filter out a signal from noise.  The top
images show the original signal exhibiting jumps and smooth
pieces (a) and a noisy version of the signal, which one would like
to “denoise” (b).  On the bottom, the result of denoising using
Haar wavelets yields a jagged line instead of a smooth curve
(c), in contrast, using Daubechies wavelets results in smoother
curve (d). (Courtesy of Ofer Levi, Stanford University)
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in the string: 2, 2, 8, 8, 8, 8, 4, 4.
Suppose, however, that we wanted to get back the

original image perfectly.  To do this, we would have
to save some additional information in the first step,
namely a set of numbers that can be added to or sub-
tracted from the low-resolution signal to obtain the
high-resolution signal.  In the example, those num-
bers are -1, -1, 0, and 2.  (For example: Adding -1 to
the first pixel of the degraded image, 2, gives 1, the
first pixel of the original image; subtracting -1 from it
gives 3, the second pixel of the original image.)

Thus the first level of the multiresolution analysis
splits the original signal up into a low-resolution part
(2, 8, 8, 4) and a high-frequency or “detail” part (-1,
-1, 0, 2).  The high-frequency details are also called
the Haar wavelet coefficients.  In fact, this whole pro-
cedure is the multiresolution version of the wavelet
transform Haar discovered in 1909.

It might not seem that the first step of the wavelet
transform has gained anything.  There were eight
numbers in the original signal, and there are still eight
numbers in the transform.  But in a typical digital
image, most pixels will be very much like their neigh-
bors: Sky pixels will occur next to sky pixels, forest
pixels next to forest pixels.  This means that the aver-
ages of nearby pixels will be almost the same as the
original pixels, and so most of the detail coefficients
will either be zero or very close to zero.  If we simply
round those coefficients off to zero, then the only
information we need to keep is the low-resolution
image plus a smattering of detail coefficients that did
not get rounded off to zero.  Thus, the amount of
data required to store the image has been compressed
by a factor of almost 2.  The process of rounding
high-precision numbers into lower precision numbers
with fewer digits is called quantization (the “Q” in
“WSQ”).  An example is the process of rounding a
number to two significant figures.

The process of transforming and quantizing can
be repeated as many times as desired, each time

decreasing the bits of information by a factor of
almost 2 and slightly degrading the quality of the
image.  Depending on the needs of the user, the
process can be stopped before the lower resolution
starts to become apparent, or it can be continued to
obtain a very low-resolution “thumbnail” image with
layers of increasingly accurate details.  With the
JPEG-2000 standard, one can achieve compression
ratios of 200:1 without a perceptible difference in the
quality of the image.  Such wavelet decompositions
are obtained by averaging more than two nearby pix-
els at a time.  The simplest Daubechies wavelet trans-
form, for instance, combines groups of four pixels,
and smoother ones combine six, eight, or more.

One fascinating property of wavelets is that they
automatically pick out the same features our eyes do.
The wavelet coefficients that are still left after quantiza-
tion correspond to pixels that are very different from
their neighbors—at the edge of the objects in an
image.  Thus, wavelets recreate an image mostly by
drawing edges—which is exactly what humans do when
they sketch a picture.  Indeed, some researchers have
suggested that the analogy between wavelet transforms
and human vision is no accident, and that our neurons
filter visual signals in a similar way to wavelets. 

Wavelets in the Future

With the foundations of wavelet theory securely in
place, the field has grown rapidly over the last decade.
A distribution list on wavelets that began with 40
names in 1990 is now an online newsletter with more
than 17,000 subscribers.  Moreover, it has continued
to evolve through a healthy mix of theory and prac-
tice.  Engineers are always trying new applications,
and for mathematicians, there are still important theo-
retical questions to be answered.

Although wavelets are best known for image com-
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Wavelets make it possible to com-
press images with little image
quality degradation.  From 
left to right are the original
image, the image compressed at
a 220:1 ratio using standard
JPEG technology and the image
compressed to the same ratio
using JPEG-2000, a method
that uses wavelets.  (Image cour-
tesy of ImageState; graphic
manipulated by Aware, Inc.)



pression, many researchers are interested in using
wavelets for pattern recognition.  In weather forecast-
ing, for example, they might slim down the data-bloated
computer models that are now in use.  Traditionally,
such models sample the barometric pressure (for
instance) at an enormous number of grid points and
use this information to predict how the data will
evolve.  However, this approach uses up a lot of com-
puter memory.  A model of the atmosphere that uses 
a 1000-by-1000-by-1000 grid requires a billion data
points—and it’s still a fairly crude model.

However, most of the data in the grid are redun-
dant.  The barometric pressure in your town is proba-
bly about the same as the barometric pressure a mile
down the road.  If the weather models used wavelets,
they could view the data the same way weather fore-
casters do, concentrating on the places where abrupt
changes occur—warm fronts, cold fronts and the like.
Other problems in fluid dynamics have been tackled
the same way.  At Los Alamos National Laboratory,
for example, wavelets are used to study the shock
waves produced by a bomb explosion.

As demonstrated by the recent spate of full-
length computer-animated films, wavelets also have
a promising future in the movies.  Because the
wavelet transform is a reversible process, it is just 
as easy to synthesize an image (build it up out of
wavelets) as it is to analyze it (break it down into
wavelet components).  This idea is related to a new
computer animation method called subdivision 
surfaces, basically a multiresolution analysis run in
reverse.  To draw a cartoon character, the animator
only has to specify where a few key points go, creat-
ing a low-resolution version of the character.  The
computer can then do a reverse multiresolution
analysis, making the character look like a real person
and not a stick figure.

Subdivision surfaces debuted in the 1998 movie
A Bug’s Life, replacing a more clumsy method
called NURBs (for non-uniform rational B splines)
that had been used in the first Toy Story movie in
1995.  Interestingly, NURBs and subdivision meth-
ods coexisted in 1999’s Toy Story 2, where the char-
acters that appeared in the first Toy Story remained
NURBs, but where the new characters were based
on the subdivision method.  The next frontier for
subdivision surfaces may be the video game indus-
try, where they could eliminate the blocky look of
today’s graphics.

Meanwhile, on the theoretical side, mathemati-
cians are still looking for better kinds of wavelets for
two- and three-dimensional images.  Although the

standard wavelet methods are good at picking up
edges, they do it one pixel at a time—an inefficient
way of representing something that may be a very
simple curve or line.  David Donoho and Emmanuel
Candès of Stanford University have proposed a new
class of wavelets called “ridgelets,” which are specifi-
cally designed to detect discontinuities along a line.
Other researchers are studying “multiwavelets,” which
can be used to encode multiple signals traveling
through the same line, such as color images in which
three color values (red, green, and blue) have to be
transmitted at once.

When asked to justify the value of mathematics,
mathematicians often point out that ideas developed
to solve a pure mathematical problem can lead to
unexpected applications years later.  But the story of
wavelets paints a more complicated and somewhat
more interesting picture.  In this case, specific applied
research led to a new theoretical synthesis, which in
turn opened scientists’ eyes to new applications.
Perhaps the broader lesson of wavelets is that we
should not view basic and applied sciences as separate
endeavors: Good science requires us to see both the
theoretical forest and the practical trees.

“Wavelets: Seeing the Forest and the Trees” was 
written by science writer Dana Mackenzie, with the
assistance of Drs. Ingrid Daubechies, Daniel Kleppner,
Stéphane Mallat, Yves Meyer, Mary Beth Ruskai, and
Guido Weiss for Beyond Discovery™: The Path from
Research to Human Benefit, a project of the National
Academy of Sciences.

The Academy, located in Washington, D.C., is a 
society of distinguished scholars engaged in scientific and
engineering research, dedicated to the use of science and
technology for the public welfare.  For more than a cen-
tury it has provided independent, objective scientific
advice to the nation.  The project’s Web site is accessible
at www.BeyondDiscovery.org, from which the full text of
all the articles in the series can be obtained.
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