
ENGR 3331 Signals and Systems Lab 2020

78

LAB 7

TRANSFER FUNCTION AND FILTER DESIGN

OBJECTIVES

 Understand the effect of the system’s poles and zeros on its response to inputs of different

frequencies.
 Design a filter with desired frequency response using zeros and poles placement technique.

INTRODUCTION

Placement of Poles and Zeros of H(s)

The Frequency response of a system provides information about the filtering capability of the system. The
frequency response of a system is determined by the locations of the poles and zeros of its transfer function
H(s) in the s-plane. Poles and zeros locations in the s-plane is a simple intuitive procedure to any filter
design. To amplify a frequency component then place a pole next to this frequency. To attenuate a
frequency component then place a zero next to this frequency.

The numerator and denominator of the transfer function H(s) of any system can be expressed as the
product of vectors in the s-plane. The vectors originate from the locations of the poles and zeros for H(s)
to any point in the s-plane that represents a specific frequency. For example, the magnitude |H(jω)| of the
transfer function shown below has the highest value when the frequency is equal 10 rad/sec. This system
resembles a first order bandpass filter with central frequency of 10rad/sec.

𝐻ଵ(𝑠) =
(𝑠 − 1)

(𝑠 + 1 − 𝑗10)(𝑠 + 1 + 𝑗10)
=

𝑟ଵ𝑒ఏభ

𝑑ଵ𝑒∅భ𝑑ଶ𝑒∅మ

Frequency Components using Spectrogram

A spectrogram is a plot that shows the strength of different frequency contents present in a signal at
different time. The x-axis is time and the y-axis is frequency. The strength of the different frequency
components is coded by color. The spectrogram is found by the short time Fourier transform of the signal.
The signal is divided to small time intervals and then the Fourier transform for each interval is calculated.
Fourier transform is a special case of the Laplace transform when σ = 0 and s = jω. The Fourier transform
for each interval will reveal the frequency components present in this interval. The following example for
the signal s(t) demonstrates the use of the spectrogram function in MATLAB to show the spectrum of the
signal.

𝑠(𝑡) = 3𝑠𝑖𝑛(2𝜋500𝑡) + 𝑠𝑖𝑛(2𝜋2000𝑡)

ENGR 3331 Signals and Systems Lab 2020

79

As shown in Fig. 1, the sinusoidal wave with 500 Hz exists in the interval 0 to 3 second, and the
sinusoidal wave with 2000Hz exists in the interval 1 to 2 second.

Fig. 1: Signal S(t) in the Time Domain

MATLAB code generating the signal s(t) and its spectrogram is below

clear all
Fs=8000; % sampling frequency
Wind = 0.1; % time interval for calculating the Fourier transform (FT) is 0.1 second
NumSampWind = Fs*Wind; % number of samples in the window for calculating the Fourier Transform
t1=0:1/Fs:3; % time scale from zero to 3 seconds
t=0:1/Fs:1; % time scale from zero to 1 seconds
ZeroTime = zeros(1, length(t)-1);
t2=[ZeroTime t ZeroTime]; % first and third seconds are zeros
Freq = [0:10:4000]; % frequency at which the Fourier transform will be calculated
Sig = 3*sin(2*pi*500*t1) + sin(2*pi*2000*t2); % sin(2π500t) for 0<t<3 and sin(2π2000t) for 1<t<2
spectrogram(Sig, NumSampWind, 0, Freq, Fs, 'yaxis') % calculate FT and plot spectrum where time in x-axis and

% frequency in y-axis

ENGR 3331 Signals and Systems Lab 2020

80

The plot of the spectrogram is shown in Fig. 2. The two red lines indicate the presence of the 500 Hz and
the 2000 Hz frequency components. The 500 Hz exists in the time interval from 0 to 3 second and the
2000 Hz exists in the time interval from 1 to 2 second. The red color indicates higher magnitude (stronger)
while blue indicates lower magnitude (weaker) frequency components in the signal s(t).

Fig. 2: Spectrogram of Signal s(t)

Notch Filter Design using H(s) of RLC Circuit

Fig. 3: 2nd Order Notch Filter

The circuit above can be used as a 2nd order notch filter if the voltage output is taken across the
inductor and capacitor. The transfer function H(s) of Vo/Vi is obtained from the voltage divider rule.

𝑉𝑜 = 𝑉𝑖 ቌ

1
𝑠𝑐

+ 𝑠𝐿

1
𝑠𝑐

+ 𝑠𝐿 + 𝑅
ቍ

ENGR 3331 Signals and Systems Lab 2020

81

𝐻(𝑠) =
𝑌(𝑠)

𝑋(𝑠
=

𝑉𝑜

𝑉𝑖
=

1
𝑠𝑐

+ 𝑠𝐿

1
𝑠𝑐

+ 𝑠𝐿 + 𝑅

Multiply the numerator and denominator by sc

𝐻(𝑠) =
𝑠ଶ𝐿𝐶 + 1

𝑠ଶ𝐿𝐶 + 𝑠𝐶𝑅 + 1
=

𝑠ଶ +
1

𝐿𝐶

𝑠ଶ +
𝑅
𝐿

𝑠 +
1

𝐿𝐶

The frequency response H(jɷ) can be found by setting s =jɷ,

 𝐻(𝑗𝜔) =
−𝜔ଶ +

1
𝐿𝐶

−𝜔ଶ + 𝑗𝜔
𝑅
𝐿

+
1

𝐿𝐶

𝐹𝑜𝑟 |𝐻(𝑗𝜔)| = 0, 𝜔 = 𝜔 =
1

√𝐿𝐶

A 2nd order notch filter can be specified in terms of its poles and zeros. For example, a 2nd Order
notch filter that suppresses 60Hz hum in a radio receiver will have two zeros at 𝑠 = ±𝑗𝜔 and
two poles at −𝜔𝑐𝑜𝑠𝜃 ± 𝑗𝜔𝑠𝑖𝑛𝜃. The filter transfer function for this notch filter with 𝜔 =
2𝜋𝑓 = 2𝜋60 = 120𝜋 is

𝐻(𝑠) =
(𝑠 − 𝑗𝜔)(𝑠 + 𝑗𝜔)

(𝑠 + 𝜔𝑐𝑜𝑠𝜃 + 𝑗𝜔𝑠𝑖𝑛𝜃)(𝑠 + 𝜔𝑐𝑜𝑠𝜃 − 𝑗𝜔𝑠𝑖𝑛𝜃)
=

𝑠ଶ + 𝜔
ଶ

𝑠ଶ + (2𝜔𝑐𝑜𝑠𝜃)𝑠 + 𝜔
ଶ

𝐻(𝑠) =
𝑠ଶ + 142122.3

𝑠ଶ + (753.98𝑐𝑜𝑠𝜃)𝑠 + 142122.3

𝑎𝑛𝑑 |𝐻(𝑗𝜔)| =
−𝜔ଶ + 142122.3

ඥ(−𝜔ଶ + 142122.3)ଶ + (753.98𝜔𝑐𝑜𝑠𝜃)ଶ

If you plot the poles and zeros in the s-plane for different values of θ, the poles will be closer to
the zeros as θ get closer to π/2. The closer the poles are to the zeros (the closer θ is to π/2), the
faster the gain recovery for the 60 Hz bandstop or notch filter.

You can simulate in Matlab the system whose transfer function is defined above as follow:

Clear all
[InputSig sr]=audioread('RainFireNoise.wav'); % loading the signal
t=0:1/sr:(length(InputSig)-1)/sr; % creating time vector that determine the samples locations
thet=80*pi/180;
NumCof = [1 0 142122.3]; % the numerator’s coefficients of the transfer function H(s)

ENGR 3331 Signals and Systems Lab 2020

82

DenCof = [1 753.98*cos(thet) 142122.3]; % the denominator’s coefficients of the transfer function H(s)
Sys = tf(NumCof, DenCof); % the Matlab function tf build the system H(s)
OutputSig = lsim(Sys, InputSig, t); % lsim returns the output “OutputSig” of the system “Sys” for InputSig

The code below plots the zeros and poles for a notch filter with the parameters’ values 𝜔 =
120𝜋 and θ = 85o. It also calculates the coefficients of the numerator and denominator of the
transfer function H(s) and plots the magnitude and the phase of H(jω).

Clear all
k= 1; % gain
f=0:0.01:100;
w=2*pi*f;
wo=2*pi*60; % frequency
theta = 85*pi/180;
z=[wo*i; -wo*i]; % Two zeros
p=[-wo*cos(theta) + wo*sin(theta)*i; -wo*cos(theta) - wo*sin(theta)*i]; % Two poles
zplane (z, p); % plot the zeros and poles on the s-plane/z-plane
figure;
[NumCof,DenCof] = zp2tf(z,p,k); % return the numerator and denominator coefficients for H(s)
H=freqs(NumCof,DenCof,w); % return the system, specified by Coff, responses to the frequency vector w
magH = abs(H);
phaseH = angle(H);
plot(w, magH)
figure
plot(w, phaseH)

PRELAB EXERCISES

Design a notch filter that will eliminate a tone noise with 1000 Hz frequency. You have in the
lab 10 mH inductor and a variety of capacitors and resistors. Choose the value of = 85o.

Call the instructor to verify the prelab. Make sure to box the transfer function H(s) and the
values of R and C.

Attendant Signature: ___

ENGR 3331 Signals and Systems Lab 2020

83

LAB EXERCISES

Filter out pure tones with minimum impact on the frequencies of a musical signal.

1) First, download from the course website the music file “RainFireNoise” to an active MATLAB
folder and play the *.wav file:

>> [SigN sr]=audioread(‘Type the directory of the folder/MusicTone.wav’);
>> sound(SigN, sr)

Can you hear the pure-tone noises? How many tones due hear?

2) Plot the corrupted musical waveform in the time domain.

3) Use the Matlab spectrogram function to find the frequencies of the pure-tone noises. You can
find in the introduction section of this lab an example using the spectrogram function. Verify your
finding with the lab instructor.

4) Use the pole-zero placements in the s-plane technique to design a filter to eliminate as much as
possible of the pure-tone noises without deteriorating the music quality.

5) Plot the frequency magnitude |H(ω)| and the phase of the designed filter.

6) Test your design by simulating the filter in Matlab using the tf and lsim functions to filter out
the noise. Play and plot the cleaned-up music signal.

Call your instructor to verify the quality of the cleaned music.

Attendant Signature:

7) Use the spectrogram function in MATLAB to plot the spectrogram of the cleaned-up music
signal. Can you tell from the spectrogram if the strength of the noise is eliminated or reduced?

8) Did your designed filter eliminate all the pure noisy tones? If not, identify the problem and
provide a solution for a better design.

9) Build the physical circuit of the filter you designed to remove the two frequencies of the noise.
Remember if your system is 4th order then you can redesign it to be two subsystems connected in
series (cascaded) where each subsystem is a 2nd order. The first subsystem eliminates the lower
frequency pure-tone noise and the second subsystem eliminates the higher frequency pure-tone
noise. Test your circuit by applying inputs of sinusoidal signals to your filter from the function
generators. Use the frequencies shown in the table below for the sinusoidal inputs. Display the
sinusoidal inputs and outputs in the oscilloscope. Fill the table below.

ENGR 3331 Signals and Systems Lab 2020

84

Freq (Hz) Input Voltage (Vi) Output Voltage (Vo) |H(j)| = Vo/Vi
50
100
200
500
1000
2000
3000
4000
5000
6000
7000
8000

Plot H(j) versus frequency. Does the shape agree with the simulation? If the output decreases
significantly for sinusoidal with frequencies equal to the frequencies of the noise while sinusoidal
signals of other frequencies are not attenuated by the same factor then your design is working.

10) Apply the original signal with pure-tone noises from the computer audio output to your filter.
The output of your filter should be the input to a speaker. You can play the corrupted music by
clicking on the wave file without Matlab. Do you hear the pure-tone noises?

Call your instructor to verify the quality of the cleaned music.

Attendant Signature:

LAB REPORT FORMAT

Submit the solutions to the questions and tasks in the order given above, and indicate the
corresponding number of each question or task. Attach a title page to the front of your report.

Your report must include the following sections: (1) Title Page (2) Introduction (3) Results
(Include answers to all questions and tasks) (4) Conclusion

