ENGR 3323: Signals and Systems
HW 10_Ch7

Q1) In previous homework you found the exponential Fourier series of x(¢). Find the Fourier transform of y(¢) and

compare X(w) to the Fourier series coefficients Dy.
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Q?2) Find the Fourier transforms of the signals shown below using the Fourier transform integral
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Q3) Find the inverse Fourier transforms of the signals shown below using the inverse Fourier transform integral
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Q4) Sketch the following functions:
c) rect ((t — 6)/8) e ﬂi J 1
1)\ (S

b) ABw/100)
f) sinc (t/5) rect (t/10m)

a) rect (t/2)
d) sinc (mw/5) e) sinc ((®/5) — 2m)
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Q5) Find the inverse Fourier transform of X(w) for the spectra illustrated in Figure below.
[Hint: X(m) = [X(o)| &4, This problem illustrates how different phase spectra (both with the same amplitude
spectrum) represent entirely different signals. ]
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Q6) The Fourier transform of the triangular pulse x(7) in Figure below is expressed as

1,
X(w) = E(e‘f‘" — jwe™I® — 1)

Use this information, and the time-shifting and time-scaling properties, to find the Fourier transforms of the
signals x1(7) and x2(?).
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