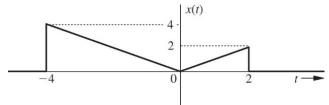

ENGR 3323: Signals and Systems


HW 1_Ch1

2) Find the power and the rms value of the signal below

3) for the signal x(t) shown below, sketch the signals

4) sketch the following signals a) u(t-5) - u(t-7)
b) (t-4)[u(t-2)-u(t-4)]
5) Simplify the following expressions:

(a)
$$\left(\frac{\sin t}{t^2+2}\right)\delta(t)$$
 (b) $\left(\frac{j\omega+2}{\omega^2+9}\right)\delta(\omega)$ (c) $[e^{-t}\cos(3t-60^\circ)]\delta(t)$ (d) $\left(\frac{\sin k\omega}{\omega}\right)\delta(\omega)$

a) x(t-4)

b) x(-t)

c) x(2t-4)

6) Evaluate the following integrals:

(a)
$$\int_{-\infty}^{\infty} \delta(\tau) x(t-\tau) d\tau$$
 (b) $\int_{-\infty}^{\infty} x(\tau) \delta(t-\tau) d\tau$ (c) $\int_{-\infty}^{\infty} \delta(t+3) e^{-t} dt$

7) A sinusoid $e^{\sigma t} \cos(\omega t)$ can be expressed as a sum of exponentials e^{st} and e^{-st} with complex frequencies $s = \sigma + j\omega$ and $s = \sigma - j\omega$. Locate in the complex plane the frequencies of the following sinusoids:

(a) $\cos 3t$ (b) e^{-2t} (c) $e^{-3t}\cos 3t$ (d) 5