HW 2_Ch1

1) For the systems described by the following equations, with the input $x(t)$ and output $y(t)$, determine which of the systems are linear and which are nonlinear.
(a) $\frac{d y(t)}{d t}+2 y(t)=x^{2}(t)$
(b) $\frac{d y(t)}{d t}+3 t y(t)=t^{2} x(t)$
(c) $\frac{d y(t)}{d t}+y^{2}(t)=x(t)$
2) For the systems described by the following equations, with the input $x(t)$ and output $y(t)$, explain with reasons which of the systems are time-invariant parameter systems and which are time-varying-parameter systems.
a) $y(t)=x(t-2)$
b) $y(t)=x(-t)$
c) $y(t)=x(a t)$
d) $\mathrm{y}(\mathrm{t})=t x(t-2)$
3) For the systems described by the following equations, with the input $x(t)$ and output $y(t)$, determine which are causal and which are noncausal.
a) $y(t)=x(t-2)$
b) $y(t)=x(-t)$
c) $y(t)=x(a t) a>1$
d) $y(t)=x(a t) \quad 0<a<1$
4) For the circuit depicted below, find the differential equations relating outputs $\mathrm{y}_{1}(t)$ and $y_{2}(t)$ to the input $x(t)$.

5) A simplified (one-dimensional) model of an automobile suspension system is shown below. In this case, the input is not a force but a displacement $x(t)$ (the road contour). Find the differential equation relating the output $y(t)$ (auto body displacement) to the input $x(t)$ (the road contour).

