1) An LTIC system is specified by the equation $\left(D^{2}+6 D+8\right) y(t)=(D+2) x(t)$
a) Find the characteristic polynomial, characteristic equation, characteristic roots, and characteristic modes of this system.
b) Find $y_{0}(t)$ the zero-input component of the response $y(t)$ for $t \geq 0$, if the initial conditions are $y_{0}\left(0^{-}\right)=2$ and $\dot{y}_{0}\left(0^{-}\right)=-1$.
2) Repeat Problem 1 for $\left(D^{2}+6 D+9\right) y(t)=D x(t)$ and $y_{0}\left(0^{-}\right)=0$ and $\dot{y}_{0}\left(0^{-}\right)=-1$.
3) Repeat Problem 1 for $\left(D^{2}+4 D+8\right) y(t)=D x(t)$ and $y_{0}\left(0^{-}\right)=1$ and $\dot{y}_{0}\left(0^{-}\right)=-2$.
4) Find the unit impulse response $h(t)$ of a system specified by the equation $\left(D^{2}+5 D+6\right) y(t)=(D+2) x(t)$
5) Find the unit impulse response of a system specified by the equation $\left(D^{2}+4 D+3\right) y(t)=\left(D^{2}+2\right) x(t)$
