1) The unit impulse response of an LTIC system is $h(t)=\mathrm{e}^{-2 t} u(t)$. Find this system's (zero-state) response $y(t)$ if the input $x(t)$ is
a) $2 u(t)$
b) $\mathrm{e}^{-t} u(t)$
c) $\sin 3 t u(t)$
d) the pulse $2 \Pi\left(\frac{t-1}{2}\right)$
e) $\delta(t)$
f) $\delta(t-2)$
2) Figure below shows the input $x(t)$ and the impulse response $h(t)$ for an LTIC system. Let the output be $y(t)$.

a. By inspection of $x(t)$ and $h(t)$, find $y(-1), y(0), y(1), y(2), y(3), y(4), y(5)$, and $y(6)$. Thus, by merely examining $x(t)$ and $h(t)$, you are required to see what the result of convolution yields at $t=-1,0,1,2,3,4,5$, and 6 .
b. Find the system response to the input $x(t)$.
3) Consider the electric circuit shown below.

a. Determine the differential equation that relates the input $x(t)$ to output $y(t)$.
b. Find the characteristic equation for this circuit, and express the root(s) of the characteristic equation in terms of L and C.
c. Determine the zero-input response given an initial capacitor voltage of one volt and an initial inductor current of zero amps. That is, find $y_{0}(t)$ given $v_{c}(0)=1 \mathrm{~V}$ and $i_{L}(0)=0 \mathrm{~A}$. [Hint: The coefficient(s) in $y_{0}(t)$ are independent of L and C.]
d. Plot $y_{0}(t)$ for $t \geq 0$. Does the zero-input response, which is caused solely by initial conditions, ever "die" out?
e. Determine the total response $y(t)$ to the input $x(t)=e^{-t} u(t)$. Assume an initial inductor current of $i_{L}\left(0^{-}\right)=0 \mathrm{~A}$, an initialcapacitor voltage of $v_{c}\left(0^{-}\right)=1 \mathrm{~V}, L=1 \mathrm{H}$, and $C=1 \mathrm{~F}$.
4) Explain, with reasons, whether the LTIC systems described by the following equations are (i) stable or unstable in the BIBO sense; (ii) asymptotically stable, unstable, or marginally stable. Assume that the systems are controllable and observable.
a. $\left(D^{2}+8 D+12\right) y(t)=(D-1) x(t)$
b. $D\left(D^{2}+3 D+2\right) y(t)=(D+5) x(t)$
c. $D^{2}\left(D^{2}+2\right) y(t)=x(t)$
d. $(D+1)\left(D^{2}-6 D+5\right) y(t)=(3 D+1) x(t)$
5) Determine a frequency ω that will cause the input $x(t)=\cos (\omega t)$ to produce a strong response when applied to the system descriptbed by $\left(\mathrm{D}^{2}+2 \mathrm{D}+13 / 4\right) y(t)=x(t)$. Carfully explain your choice.
