1) By direct integration find the Laplace transform and the region of the convergence of the following functions:
a) $u(t)-u(t-1)$
b) $t e^{-t} u(t)$
c) $\mathrm{e}^{-2 t} u(t-5)+\delta(t-1)$
2) Find the inverse (unilateral) Laplace transform of the following functions:
a. $\frac{2 s+5}{s^{2}+5 s+6}$
b. $\frac{3 s+5}{s^{2}+4 s+13}$
c. $\frac{s+2}{s(s+1)^{2}}$
d. $\frac{(s+1)^{2}}{s^{2}-s-6}$
3) Suppose a CT signal $x(t)=2[u(t-2)-u(t+1)]$ has a transform $X(s)$.
a) If $Y_{\mathrm{a}}(s)=\mathrm{e}^{-5 s} s X(s+1 / 2)$, determine and sketch the corresponding signal $y_{a}(t)$.
b) If $Y_{b}(s)=2^{-s} s X(s-2)$, determine and sketch the corresponding signal $y_{b}(t)$.
4) Using only the Laplace table and the time-shifting property, determine the Laplace transform of the signals shown below. [Hint: See textbook for discussion of expressing such signals analytically.]

(a)

(b)

(c)
5) It is difficult to compute the Laplace transform $X(s)$ of signal $x(t)=(1 / t) u(t)$ by using direct integration. Instead, properties provide a simpler method.
a. Use Laplace transform properties to express the Laplace transform of $t x(t)$ in terms of the unknown quantity $X(s)$.
b. Use the definition to determine the Laplace transform of $y(t)=t x(t)$.
c. Solve for $X(s)$ by using the two pieces from a and b. Simplify your answer.
