ENGR 3323: Signals and Systems

HW 9_Ch6 Answer Keys

Q1)

a) for $x(t)$

$$
D_{n}=\frac{1}{5} \operatorname{sinc}\left(\frac{n \pi}{5}\right)
$$

for $y(t)$

$$
D_{n}=\frac{1}{2 \pi} \int_{0}^{2 \pi} \frac{t}{2 \pi} e^{-j n t} d t=\frac{j}{2 \pi n},
$$

b)

c) For $\mathrm{x}(\mathrm{t})$, the $5^{\text {th }}$ hormonic will be less than 10% of the DC and the approximate power for the DC and the first five harmonics is $\mathrm{P}=0.1805$.

For $\mathrm{y}(\mathrm{t})$, the $2^{\text {nd }}$ hormonic will be less than 10% of the DC and the approximate power for the DC and the first two harmonics is $\mathrm{P}=0.3013$.
Q2)
a)

b) $x(t)=3+4 \cos \left(t-\frac{\pi}{2}\right)+4 \sqrt{2} \cos \left(3 t-\frac{\pi}{4}\right)$

c) Since, the trigonometric series in part (b) is obtained from the exponential series in part (a), the two series are equivalent.
d) The lowest frequency in the spectrum is 0 and the highest frequency is $3 \mathrm{rad} / \mathrm{s}$. Therefore, the bandwidth is $3 \mathrm{rad} / \mathrm{s}$ or $\frac{3}{2 \pi} \mathrm{~Hz}$.
Q3)
(a) $x(t)=-2+2 e^{j\left(t+\frac{2 \pi}{3}\right)}+2 e^{-j\left(t+\frac{2 \pi}{3}\right)}+e^{j\left(2 t+\frac{\pi}{3}\right)}+e^{-j\left(2 t+\frac{\pi}{3}\right)}$
(b)

(c) $x(t)=2+4 \cos \left(t+\frac{2 \pi}{3}\right)+2 \cos \left(2 t+\frac{\pi}{3}\right)$
(d) $x(t)=2+4 \cos \left(t+\frac{2 \pi}{3}\right)+2 \cos \left(2 t+\frac{\pi}{3}\right)$

$$
=2+2 e^{j\left(t+\frac{2 \pi}{3}\right)}+2 e^{-j\left(t+\frac{2 \pi}{3}\right)}+e^{j\left(2 t+\frac{\pi}{3}\right)}+e^{-j\left(2 t+\frac{\pi}{3}\right)}
$$

Q4) For $x(t)=(2+j 2) \mathrm{e}^{-j 3 t}+j 2 \mathrm{e}^{-j t}+3-j 2 \mathrm{e}^{j t}+(2-j 2) \mathrm{e}^{j 3 t}$

$$
D_{-3}=2+\mathrm{j} 2 ; \quad D_{-2}=0 ; \quad D_{-1}=\mathrm{j} ; \quad D_{0}=3 ; \quad D_{1}=-\mathrm{j} ; \quad D_{2}=0 ; \quad D_{3}=2-\mathrm{j} 2
$$

$H(j \omega)=\frac{j \omega}{\left(-\omega^{2}+3\right)+j 2 \omega}$

$$
y(t)=\sum_{n=-\infty}^{\infty} D_{n} H\left(j n \omega_{0}\right) e^{j n \omega_{0} t}
$$

Q5)
(a) $\quad x(t)=\sum_{n=-\infty}^{\infty} \frac{1-e^{-1}}{1+j 2 \pi n} e^{j 2 \pi n t}$
(b) $H(j \omega)=\frac{j \omega}{j \omega+1}$

$$
\begin{aligned}
y(t) & =\sum_{n=-\infty}^{\infty} D_{n} H(j 2 \pi n) e^{j 2 \pi n t} \\
& =\sum_{n=-\infty}^{\infty} \frac{j 2 \pi n\left(1-e^{-1}\right)}{(1+j 2 \pi n)^{2}} e^{j 2 \pi n t}
\end{aligned}
$$

