Formula Sheet

Let X, ..., X, be a sample. The sample mean is
1 n
X=-3x (11
e
Let Xy, ..., X, be a sample. The sample variance is the quantity
Q— —
2 2
= — Xi—X 1.2
5t=— ,Z:.:( =X (1.2)

An equivalent formula, which can be easier to compute, is

szznil (ZX,—Z—HYZJ (1.3)

i=1

Let X, ..., X, be a sample. The sample standard deviation is the quantity

1 & —
=,|— X; —X)?2 1.4
s= g 2& =D (14

i=1

An equivalent formula, which can be easier to compute, is

1 - 5 -
S_JH—I(EXEHX) (1.5)

The sample standard deviation is the square root of the sample variance.

If n numbers are ordered from smallest to largest:

n+1
B Ifnis odd, the sample median is the number in position

B Ifn is even, the sample median is the average of the numbers in positions

n
2andZ o1
2 %3

Chapter 2

The Axioms of Probability
1. Let & be a sample space. Then P(S) = 1.
2. Foranyevent A,0 < P(A) < 1.
3. If A and B are mutually exclusive events, then P(A U B) = P(A) + P(B).
More generally, if A;, A,, ... are mutually exclusive events, then
P(AJUAU..)=P(A)+P(A)) +---.

For any event A,

P(AS) =1 — P(A) @2.1)
Let @ denote the empty set. Then
P@) =0 (2.2)
Let A and B be any events. Then
P(AUB)=P(A)+ P(B)— P(ANB) (2.5)

For any positive integer n, n! = n(n — 1)(n — 2)--- (3)(2)(1).

Also, we define 0! = 1.

The number of permutations of n objects is n!.

The number of permutations of k objects chosen from a group of n objects is
n!
(n—k)!

Summary

The number of combinations of k objects chosen from a group of n objects is

LA n! 2.12
k) k' n—k)! 12)
The number of ways of dividing a group of n objects into groups of ky, ..., k;
objects, where ky +--- + k&, = n.is
n!
k_l!"'kr! (2.13)
Let A and B be events with P(B) = 0. The conditional probability of A given B is
P(ANB)
P(A|B) = —— 2.14
(A|B) PB) (2.14)

Definition

Twao events A and B are independent if the probability of each event remains
the same whether or not the other occurs.
In symbols: If P(A) # 0and P(B) # 0, then A and B are independent if

P(B|A) = P(B) or. equivalently, P(A|B)= P(A) (2.15)
If either P(A) = O or P(B) = 0, then A and B are independent.

Definition

Events Ay, A, .... A, are independent if the probability of each remains the
same no matter which of the others occur.

In symbols: Events A, A, ..., A, are independent if for each A;. and each
collection Ajy, ..., Aj, of events with P(A;; N..-NAj,) # 0,

P(AJAj I D - N Ajm) = P(A) (2.16)

If A and B are two events with P(B) # 0, then

P(ANB)= P(B)P(A|B) (2.17)
If A and B are two events with P(A) # 0, then
P(ANB) = P(A)P(B|A) (2.18)

If P(A) = O and P(B) = 0, then Equations (2.17) and (2.18) both hold.

If A and B are independent events, then

P(ANB) = P(A)P(B) (2.19)
This result can be extended to any number of events. If A, A5, ..., A, are
independent events, then for each collection Ajy, ..., A, of events
P(AjiNAjN---NAj,) =P(Aj)P(Ap)--- P(Ajm) (2.20)
In particular,
PAINA M- NA) =PADP(A2) --- P(A,) (2.21)

Law of Total Probability

If Ay, ..., A, are mutually exclusive and exhaustive events, and B is any event,
then
P(B)=P(A NB)+---+ P(A,NB) (2.23)
Equivalently, if P(A;) # 0 for each A;,
P(B) = P(B|A)P(A) +---+ P(B|A)P(A,) (2.24)

Bayes’ Rule
Special Case: Let A and B be events with P(A) # 0, P(A°) # 0, and
P(B) # 0. Then

P(BJA)P(A)

SEES P(B|A)P(A) + P(B|A°) P(A7)

(227)

General Case: Let A, ..., A, be mutually exclusive and exhaustive events
with P(A;) # 0 for each A;. Let B be any event with P(B) # 0. Then
P(B|Ay)P(Ag)

PR = s 1Ay Pay)

(2.28)




Summary

Let X be a discrete random variable. Then

B The probability mass function of X is the function p(x) = P(X = x).
B The cumulative distribution function of X is the function F(x) = P(X < x).

B Fx)= Z pl) = Z P(X =1).

1=x t=x

] Z plx) = Z P(X = x) = 1, where the sum is over all the possible
X X

v-alues of X.

Definition

Let X be a discrete random variable with probability mass function
px)=P(X =x).

The mean of X is given by
iy :pr(x =x) (2.29)
x
where the sum is over all possible values of X.

The mean of X is sometimes called the expectation, or expected value, of X
and may also be denoted by E(X) or by jt.

Summary

Let X be a discrete random variable with probability mass function
p(x) = P(X =x). Then

B The variance of X is given by

ox =) (= pux’PX =) (2.30)

x

B An alternate formula for the variance is given by
oy =3 XP(X =x) -k (2.31)

B The variance of X may also be denoted by V(X) or by o>
B The standard deviation is the square root of the variance: oy =/ oxz.

Summary

Let X be a continuous random variable with probability density function f(x).
Let a and b be any two numbers, with @ < b. Then

b
P(angb):P(a5X<b)=P(a<X§b)=P(a<X<b)=f flx)dx

In addition,

b
PX=b)=P(X <b) :f S(x)dx (2.32)

P(Xza)=P(X>a)= fm fx)dx (2.33)

Summary

Let X be a continuous random variable with probability density function f(x).
Then

/w flxydx =1

Definition

Let X be a continuous random variable with probability density function f(x).
The cumulative distribution function of X is the function

F(x) = P(X gx):f F(t)dr (2.34)

Definition

Let X be a continuous random variable with probability density function f(x).
Then the mean of X is given by

Hy = ]m xf(x)dx (2.35)

The mean of X is sometimes called the expectation, or expected value, of X and
may also be denoted by E(X) or by u.

Definition

Let X be a continuous random variable with probability density function f (x).
Then

B The variance of X is given by
o
o} = j () f)dx 2.36)
-0
B An alternate formula for the variance is given by

oy =[ X f)dy —py (2.37)

B The variance of X may also be denoted by V(X) or by o>,
B The standard deviation is the square root of the variance: oy = \/o3.

Definition

Let X be a continuous random variable with probability mass function f(x) and
cumulative distribution function F(x).

B The median of X is the point x,, that solves the equation
Flxy)=P(X <x,) = f_"gc flxydx =0.5.
B If p is any number between 0 and 100, the pth percentile is the point x ,
that solves the equation F(x,) = P(X < x,) = f:;c f(x)dx = p/100.
B The median is the 50th percentile.

Chebyshev’s Inequality
Let X be a random variable with mean py and standard deviation oy . Then

1
P(X — px| > kox) < =

Summary

If X is a random variable and b is a constant, then
Hx+b = px +b (2.39)

Oxep =0y (2.40)

Summary

If X is a random variable and « is a constant, then

Hax = afly (2.41)

Summary

If X is a random variable and a is a constant, then

ol = dloj (2.42)

a

oax = |alox (2.43)

Summary

If X is a random variable, and a and b are constants, then

Hax+b = aplx +b (2.44)
Oy =a'0% (2.45)
Oaxtp = laloy (2.46)
If X, X, ..., X, are random variables, then the mean of the sum X + X, +
-+ -+ X, is given by
HX 4 Xot X, = Mx, + M1x, + -+ My, (2.47)
If X,,..., X, are random variables and ¢, . . ., ¢, are constants, then the ran-

dom variable

aXy+--- X,

is called a linear combination of X, ..., X,..

If X and ¥ are random variables, and a and b are constants, then
Hax+by = Hax + Moy = Gftx +bpy (2.48)

More generally, if X, X», ..., X, are random variables and ci, ¢z, ..., ¢, are
constants, then the mean of the linear combination ¢) X + o Xo + -+ ¢, X,
is given by

e\ X)+ea Xot e Xe = CLUX, + C2[Lx; + -+ + Callx, (2.49)




If X and Y are independent random variables, and S and T are sets of numbers,
then

P(XeSandY eT)=P(X € S)P(Y € T) (2.50)

More generally, if Xy, ..., X, are independent random variables, and Sy, ..., S,
are sets, then

P(X,eSand X, € S;and--- and X, € §,) =

P(X, e S))P(X,€ 83)---P(X,€8,) (2.51)
If Xy, X, ..., X, are independent random variables, then the variance of the
sum X; + X5 + --- + X, is given by
OF 4 Xt i Xa = 0%, T 0%, + o+ 0%, (2.52)
If X1, X2...., X, are independent random variables and ¢, ¢2, ..., ¢, are
constants, then the variance of the linear combination ¢y X, +c; Xo 4+ - -+c¢, X,
is given by
2 2 2 22
OF Kty X, = C10%, F+ C30%, + - + ooy (2.53)

If X and Y are independent random variables with variances o} and o7, then
the variance of the sum X 4+ Y is

0%,y = 0% +0} (2.54)

The variance of the difference X — Y is

Ty =05 S5 (2.55)
If Xy, .... X, is a simple random sample from a population with mean p and
variance o2, then the sample mean X is a random variable with
g =u (2.36)
2
o
2 _
oz = - (2.57)
The standard deviation of X is
o
=— 2.58
ox 7 (2.58)

Summary

If X and Y are jointly discrete random variables:
B The joint probability mass function of X and Y is the function
px.y)=P(X =xandY =y)

B The marginal probability mass functions of X and of ¥ can be obtained
from the joint probability mass function as follows:

P =PX=x)=) px,y) pr(M=P¥=y=> plxy)

where the sums are taken over all the possible values of ¥ and of X,
respectively.
B The joint probability mass function has the property that

3> =1

where the sum is taken over all the possible values of X and Y.

Summary
If X and Y are jointly continuous random variables, with joint probability density
function f(x,v),and a < b, ¢ < d, then

b d
P(aSXSbandchsd):ff Fx,y)dyde
a c

The joint probability density function has the following properties:
f(x,y) > 0forallx and y

/ f Fooydyds =1

If X and ¥ are jointly continuous with joint probability density function f(x,y),
then the marginal probability density functions of X and of ¥ are given, respec-
tively, by

Summary

fx(IJ:/ flx,y)dy fr(}’):j fx,y)dx

®  If the random variables X, ..., X, are jointly discrete, the joint
probability mass function is

Py, x) = P(Xy=xp, ..., X, =2x,)
B If the random variables X, ..., X, are jointly continuous, they have a
joint probability density function f(xi,...,x,). where

b by
P(ﬂ|EX1Ebh---,ﬂnEXnEb"):/‘ f fxy, o x,)dey - edy,
an @

for any constants a; < by. ..., a, <b,.

Let X be a random variable, and let h(X) be a function of X. Then

B If X is discrete with probability mass function p(x), the mean of A(X) is
given by

Hx) = Z hx)p(x) (2.59)

where the sum is taken over all the possible values of X.

B If X is continuous with probability density function f(x), the mean of
h(X) is given by

Hnex =f h(x) f(x)dx (2.60)

If X is a random variable, and a and b are constants, then

Haxip = ajiy +b (2.61)
Oixss = G°0% (2.62)
Oax s = |aloy (2.63)

If X and Y are jointly distributed random variables, and /(X,Y) is a function
of X and Y, then

B If X and Y are jointly discrete with joint probability mass function p(x,v).
ey =Y 9 h(x,y)px,y) (2.64)

x oy
where the sum is taken over all the possible values of X and Y.

B If X and Y are jointly continuous with joint probability density function
Fx),

Fen(x.y) =j j h(x,y)f(x,y)dx dy (2.65)

Let X and Y be jointly discrete random variables, with joint probability mass
function p(x.y). Let px(x) denote the marginal probability mass function of X

and let x be any number for which py(x) = 0.
The conditional probability mass function of ¥ given X = x is
(x,y)
prxty v = £ (2.66)
px(x)
Note that for any particular values of x and y, the value of py x(y|x) is just the
conditional probability P(Y = y| X = x).

Definition
Let X and Y be jointly continuous random variables, with joint probability density
function f(x,y). Let fx(x) denote the marginal probability density function of
X and let x be any number for which fy(x) > 0.

The conditional probability density function of ¥ given X = x is

flxy)
fx(x)

Trix(ylx) = (2.67)

If X and Y are independent random variables, then
B If X and Y are jointly discrete, and x is a value for which pyx(x) > 0, then
Prix(¥1x) = pr(¥)

B If X and Y are jointly continuous, and x is a value for which fx(x) > 0,
then

Frix(y1x) = fr(¥)




Two random variables X and Y are independent, provided that

B If X and ¥ are jointly discrete, the joint probability mass function is equal
to the product of the marginals:

px,y) = px(x)py(y)

B If X and Y are jointly continuous, the joint probability density function is
equal to the product of the marginals:

fx.y) = fx(x)fr(y)

Random variables X, ..., X, are independent, provided that
| IfX,,....X, are jointly discrete, the joint probability mass function is
equal to the product of the marginals:
POy, X)) = py (X)) - px, ()
m IfX,,....X, are jointly continuous, the joint probability density function

is equal to the product of the marginals:

fxn .. x0) = fx,(x1) - fx, (%)

Let X and Y be random variables with means ¢x and jy. The covariance of X
and ¥ is

Cov(X,Y) = hix—ppyr—pn) (2.68)
An alternate formula is

Cov(X.Y) = pxy — txpy (2.69)

Let X and Y be jointly distributed random variables with standard deviations oy
and oy . The correlation between X and Y is denoted py y and is given by
Cov(X.,Y)

pxy =——"— (2.70)
OxOy

For any two random variables X and Y:

—l<pxy=1

For any random variable X, Cov(X, X) = 0)2( and px x = 1.

B IfCov(X,Y) = pxy =0, then X and Y are said to be uncorrelated.
B If X and Y are independent, then X and Y are uncorrelated.

B Itis mathematically possible for X and Y to be uncorrelated without being
independent. This rarely occurs in practice.

If Xy, ..., X, are random variables and ¢/, .. ., ¢, are constants, then the ran-
dom variable

X+ -+ X,

is called a linear combination of X, ..., X,.
If Xy, ..., X, are random variables and ¢y, . .., ¢, are constants, then
Hey X+ +ea X, = Clibx, + -+ Callx, (2.71)
n—1 n
02 pigtenx, = C10%, + - +C20F + 22 Z cicj Cov(X;, X;)  (2.72)
i=1 j=i+1
If X,,..., X, are independent random variables and ¢, .. ., ¢, are constants,
then
”rz|X|+---+c,.X.. = cftr;‘zl +--- 4+ c‘ga}n (2.73)
In particular,
OFtix, = 0%, + - +0F, (2.74)

If X and ¥ are random variables, then
Oysy = 0% + 07 +2Cov(X,¥) (2.75)
0% _y =0y + o7 —2Cov(X,Y) (2.76)
If X and ¥ are independent random variables, then
Oyiy = 0% +0y (2.77)

TE_; =Gk TE (2.78)

If Xy, ..., X, is a simple random sample from a population with mean p and
variance o, then the sample mean X is a random variable with
Uy =K (2.79)
,_ o
or=— (2.80)
n
The standard deviation of X is
o
or= —-= (2.81)

Chapter 3

B A measured value is a random variable with mean p and standard
deviation o.

B The bias in the measuring process is the difference between the mean
measurement and the true value:
Bias = ¢t — true value

B The uncertainty in the measuring process is the standard deviation o.
B The smaller the bias, the more accurate the measuring process.
B The smaller the uncertainty, the more precise the measuring process.

Let Xy, ..., X, be independent measurements, all made by the same process on
the same quantity.

M The sample standard deviation s can be used to estimate the uncertainty.

M Estimates of uncertainty are often crude, especially when based on small
samples.

B If the true value is known, the sample mean X can be used to estimate the

bias: Bias == X — true value.

M If the true value is unknown, the bias cannot be estimated from repeated
measurements.

If X is a measurement and c is a constant, then
oex = |clox (3.3)

If Xy, ..., X, are independent measurements and ¢y, . . . , ¢, are constants, then

O Xi+-+eaXn = V C?U)Qn ApoonsF 030%,. (B4

If Xy, ..., X, are n independent measurements, each with mean p and uncer-
tainty o, then the sample mean X is a measurement with mean

My =L (3.5)
and with uncertainty

(3.6)

O’y:

n

If X and ¥ are independent measurements of the same quantity, with uncertainties
oy and oy, respectively, then the weighted average of X and Y with the smallest
uncertainty is given by cpest X + (1 — Cpest) Y, where

2 2
_ oy _ O
Chest = W 1 — Cpest = W 3.7
If X,, ..., X, are measurements and c, .. ., ¢, are constants, then
Oy X+ 4o X, = |C1|ox, 4 - - -+ |enlox, (3.8)
Chapter 4

If X ~ Bernoulli(p), then

Ly =p (4.1)

o =p(—p) 4.2)




Summary

If a total of n Bernoulli trials are conducted. and

B The trials are independent
B Each trial has the same success probability p
B X is the number of successes in the n trials

then X has the binomial distribution with parameters n and p., denoted
X ~ Bin(n, p).

Summary

Assume that a finite population contains items of two types, successes and fail-
ures, and that a simple random sample is drawn from the population. Then if the
sample size is no more than 5% of the population, the binomial distribution may
be used to model the number of successes.

If X ~ Bin(n, p), the probability mass function of X is
n!
———p' (1 —p)"" x=01,...n
p(x) = P(X =x) = ¢ ¥ -

0 otherwise

(4.4)

Summary
If X ~ Bin(n, p), then the mean and variance of X are given by

fix = np @5)
oz =np(l —p) (4.6)

Summary

If X ~ Bin(n, p), then the sample proportion p = X/n is used to estimate the
success probability p.

M 7 is unbiased.
B The uncertainty in p is

1—
o — p( : P) @mn

In practice, when computing o5, we substitute p for p, since p is unknown.

Summary
If X ~ Poisson(i), then
B X is adiscrete random variable whose possible values are the non-negative

integers.
B The parameter A is a positive constant.
B The probability mass function of X is

a2 ifxi tive int
e — if x is a non-negative integer
P =PX=x)=4° 1 & ¢
otherwise

B The Poisson probability mass function is very close to the binomial
probability mass function when # is large, p is small, and A = np.

Summary

If X ~ Poisson(A), then the mean and variance of X are given by

Ly = A (4.10)

ol =% .11)

Summary

Let 4 denote the mean number of events that occur in one unit of time or space.
Let X denote the number of events that are observed to occur in ¢ units of time
or space. Then if X ~ Poisson(Af), A is estimated with & = X/I.

Summary

>‘:|

If X ~ Poisson(At), we estimate the rate A with 1 = T

B 7 is unbiased.
B The uncertainty in % is

A
oy = 7 (4.12)

In practice, we substitute X for A in Equation (4.12), since A is unknown.

Assume a finite population contains N items, of which R are classified as suc-

cesses and N — R are classified as failures. Assume that n items are sampled

from this population, and let X represent the number of successes in the sample.

Then X has the hypergeometric distribution with parameters N, R, and n, which

can be denoted X ~ H(N, R, n).

The probability mass function of X is

R\ (N —
(9629

max(0, R +n — N)<x < min(n, R)

p)=P(X=x)=
n
otherwise
(4.15)
If X ~ H(N, R, n), then
nR
Px =7 (4.16)

a}:n(%) (1-%) (ﬁ:?) (4.17)

If X ~ Geom(p), then the probability mass function of X is
p(l—py! x=12...
0

otherwise

pl) = P(X =x) =

If X ~ Geom(p), then

1
Hx = — (4.18)
14
I-p
oy = (4.19)
X Pz

If X ~ NB(r, p), then the probability mass function of X is

x—1\ , -
(I —py—r x=rr+1,...
p() = P(X =x)= (rfl)‘” g
0 otherwise

If X ~ NB(r, p), then
X=¥V+.--+Y7

where Y, ..., Y, are independent random variables, each with the Geom(p)
distribution.

If X ~ NB(r, p), then

.
My =— (4.20)

)
ol = % @21

Assume n independent trials are performed, each of which results in one of
k possible outcomes. Let xj, ..., xx be the numbers of trials resulting in out-
comes 1,2, ..., k, respectively. The number of arrangements of the outcomes
among the n trials is
n!
x;!xz!---xk!

If Xi,..., Xy ~ MN(n, pi,..., p), then the probability mass function of
X], ceo g Xk is

px, ... x) = P(Xi=x1,..., Xk = xi)
|
Y :‘ IPT‘P?"'F? x=012...,n
Xl ot Xk andd x; =n
0 otherwise
(4.22)
IfX,,....Xy ~MNn, pp,...,p), then for each i
X; ~ Bin(n, p;)




If X ~ N(u, o?), then the mean and variance of X are given by

Hx = 1L
of =0’
1 e\ (22 —
fx) = e F—n)/(2e7) r—pn

o221 ==

Summary
Let X ~ N(u, o2), and leta # 0 and b be constants. Then
aX + b~ Niap + b, a*c?). (4.25)

Summary

Let Xy, X,,..., X, be independent and normally distributed with means
1y fay - .« Jin and variances o7, 03, ..., 2. Letcy, €2, . . . , ¢, be constants, and
Xy + X2+ -+ - + ¢, X, be a linear combination. Then

X1 +0aX o, Xy~ N(Cy b +Cafin - Cafly, €L 0T +C303 4+ - a0
(4.26)

Summary

Let Xy, ..., X, be independent and normally distributed with mean p and vari-
ance o>. Then

2
T~N (u, “_) @27)
n

Summary
Let X and Y be independent, with X ~ N(ux, o3)and ¥ ~ N(uy, of). Then

X +VY ~N(ux +py, 0y + 0} (4.28)

X —¥ ~ N(uy — ity, oy + o) (4.29)

Summary

B IfX ~ N(u. o?), then the random variable ¥ = ¢* has the lognormal
distribution with parameters j and o2,

B If ¥ has the lognormal distribution with parameters y1 and o2, then the
random variable X = InY has the N(u, o) distribution.

ifx =0

7 [ aaton -]

———exp |———=(lnx — )

fx) =1 oxv2m 202 (4.30)
0 ifx =0

E(Y) ="t 2 Y(Y) = 220 _ glnto’ 4.31)

Definition

The probability density function of the exponential distribution with parameter
A= 0is
P x>0

flx)y= {0 <0 (4.32)

Summary

If X ~ Exp(4). the cumulative distribution function of X is

F(x):P(ng):{['}_"f” ;:g (4.33)
If X ~ Exp(A). then
1
px =3 (4.34)
, 1
o= 435)

If events follow a Poisson process with rate parameter 2, and if T represents
the waiting time from any starting point until the nextevent, then 7" ~ Exp().

Lack of Memory Property
If T ~ Exp(i), and f and s are positive numbers, then

PT>t+s|T>5)=P(T >1)

Summary

If X1, ..., X, isarandom sample from Exp(2.), then the parameter A is estimated
with

x= (4.36)

=

This estimator is biased. The bias is approximately equal to & /n. The uncertainty
in 7 is estimated with

1
X /n
This uncertainty estimate is reasonably good when the sample size is more
than 20.

P
oy A

(4.37)

Definition

The probability density function of the continuous uniform distribution with
parameters a and b is

1
—_— a<x<b
fx)=4b—a (4.41)
0 otherwise
If X is a random variable with probability density function f(x), we say that X
is uniformly distributed on the interval (a, b).

Let X ~ U(a, b). Then

+b

e =" 4.42)
(b —a)’

of = = (4.43)

Definition

For r = 0, the gamma function is defined by

00
I'(r)= f e dt (4.44)
0
The gamma function has the following properties:

1. If r is an integer, then I'(r) = (r — 1)1
2. Forany r,T'(r +1)=rI(r).
3. T(1/2) = .

Definition

The probability density function of the gamma distribution with parameters r > 0
and L > 0 is
Wxr—leh o
flx)y= ) (4.45)

o

=
IA

=]

Summary

If Xy, ..., X, are independent random variables, each distributed as Exp(A), then
the sum X +--- + X, is distributed as ['(r, ).

If X ~ T'(r, ), then
(4.46)

(4.47)

If T ~ I'(r, &), and r is a positive integer, the cumulative distribution function
of T is given by

r—1

lfz:e_‘“M x>0

Fx)=P(T <x)= = J! (4.48)
0 x<0
The Weibull Distribution
B aﬂuxa—lgftﬂxl" =0
flx)= {0 x<0 (4.49)

j af 1 e P gy =1 — P x>0
Foy=PX <=4 Jo (450)

0 x<0



If X ~ Weibull(z, §), then

In the special case that 1/« is an integer, then

(O] {1

Let # be a parameter, and @ an estimator of 8. The mean squared error (MSE) of
0 is

MSE; = (15 — 0)* + ¢} (4.53)

An equivalent expression for the MSE is

MSE; = pp_sy2 (4.54)

Definition
Let Xy,..., X, have joint probability density or probability mass function
flxy, oo, x0 01, ..., B), where 6y, ..., 6 are parameters, and x, ..., x, are
the values observed for X |, ..., X,,. The values#,, ..., &, that maximize f arethe
maximum likelihood estimates of &, ..., 6.

If the random variables X, ..., X, are substituted for x, ..., x,, then
Ay, ..., 6 are called maximum likelihood estimators.

The abbreviation MLE is often used for both maximum likelihood estimate
and maximum likelihood estimator.

The Central Limit Theorem

Let X,..., X, be a simple random sample from a population with mean
and variance o>
X1 SEEEE L

- X
Let X = “ be the sample mean.

n
Let S, = Xi +--- + X, be the sum of the sample observations.

Then if n is sufficiently large,
- o?
X~N (a, —)
n

Sp ~ N(np, ncrz} approximately (4.56)

approximately (4.55)

and

For most populations, if the sample size is greater than 30, the Central Limit
Theorem approximation is good.

If X ~ Bin(n, p), and if np > 10 and n(1 — p) > 10, then

X ~ N(np, np(1 — p)) approximately (4.57)

1—
p~N (p, u) approximately (4.58)
n

Tocompute P(45 = X = 55), the areas of the rectangles corresponding
to 45 and to 55 should be included. To approximate this probability with the normal
curve, compute the area under the curve between 44.5 and 55.5.

Tocompute P(45 < X = 55), the areas of the rectangles corresponding
to 45 and to 55 should be excluded. To approximate this probability with the normal
curve, compute the area under the curve between 45.5 and 54.5.

If X ~ Poisson(A), where 4 = 10, then

X ~ Nk, A) approximately (4.59)

Chapter 5

al2 | -« al2

M~ Zapox [ B+ Zpox

Let X1,..., X, be a large (n > 30) randgm sample from a population with
mean g and standard deviation ¢, so that X is approximately normal. Then a
level 100(1 — @)% confidence interval for p is

Y:l: Za20% {51)

where oy = ¢//n. When the value of ¢ is unknown, it can be replaced with the
sample standard deviation s.

s
Jn
— 5
B X +1.645— is a 90% confidence interval for fi.
NG
m Y+ 1.9(‘5i is a 95% confidence interval for p.
NG
m X+ 2.58i is a 99% confidence interval for p.
vn
s

NG

m X+ is a 68% confidence interval for pt.

m X+3 is 2 99.7% confidence interval for jt.

Summary

Let Xy,..., X, be a large (n > 30) random sample from a population with
mean 4 and standard deviation &, so that X is approximately normal. Then level
100(1 — )% lower confidence bound for 1t is

X - Zu0y (5.2)
and level 100(1 — & )% upper confidence bound for p is
X+ 2,07 (5.3)

where o = o//n. When the value of o is unknown, it can be replaced with the
sample standard deviation s.

Summary

Let X be the number of successes in n independent Bernoulli trials with success
probability p, so that X ~ Bin(n. p).

X+2
Define i = n +4, and p = ———. Then a level 100(1 — )% confidence
i

interval for p is
o [p(1—P)
PEiap % (5.5)

If the lower limit is less than 0. replace it with 0. If the upper limit is greater
than 1, replace it with 1.

Let X be the number of successes in #n independent Bernoulli trials with success
probability p, so that X ~ Bin(n, p).

- . X+2
Define i = n+4,and p = - Then a level 100(1 — «)% lower

confidence bound for p is

P—Za w (5.6)

and level 100(1 — )% upper confidence bound for p is

ﬁ+za\f—‘ﬁ(1;m (5.7

If the lower bound is less than 0, replace it with 0. If the upper bound is greater
than 1, replace it with 1.




Summary

The Traditional Method for Computing Confidence Intervals for a
Proportion (widely used but not recommended)

Let p be the proportion of successes in a large number n of independent
Bernoulli trials with success probability p. Then the traditional level 100(1 —a)%

confidence interval for p is
=1—%
Pt zapy/ Q (5.8)

The method cannot be used unless the sample contains at least 10 successes and
10 failures.

Summary

Let Xy, ..., Xy be asmall (e.g.,n < 30) sample from a normal population with
mean g. Then the quantity

X—u
s//n
has a Student’s ¢ distribution with n — | degrees of freedom, denoted #,,_,.

When # is large, the distribution of the quantity (X — 1) /(s//n) is very
close to normal, so the normal curve can be used, rather than the Student’s 7.

Summary

Let Xy. ..., X, be a small random sample from a normal population with mean
. Then a level 100(1 — )% confidence interval for p is

— 5
X+ rﬂ—l.aﬂﬁ (5.9

Let Xi. ..., X, be asmall random sample from a nermal population with mean
. Then a level 100(1 — a)% upper confidence bound for p is

— K
X—H—mﬁ (5.10)
and a level 100(1 — «)% lower confidence bound for  is

PR G.11)

NG

Summary

Let Xy,..., X» be a random sample (of any size) from a normal population
with mean jt. If the standard deviation o is known, then a level 100(1 — a)%
confidence interval for u is

Yj:z.,p% (5.12)

Summary

Let X be a single value sampled from a normal population with mean p. If the
standard deviation & is known, then a level 100(1 — @)% confidence interval for
s

X L zupo (5.13)

Let X and ¥ be independent, with X ~ N(ux, o3)and ¥ ~ N(uy, o). Then
X 4+ Y ~ N(uy + py, oz +02) (5.14)

X — ¥ ~ N(ux — piy, o +05) (5.15)

Summary

Let Xy, ..., X,y be a large random sample of size nx from a population with
mean jy and standard deviation oy, and let Yy, ..., Y,, be a large random
sample of size ny from a population with mean jty and standard deviation oy If
the two samples are independent, then a level 100(1 — «)% confidence interval
for y — iy is

X Ttz 2+ (5.16)
n

‘When the values of oy and oy are unknown, they can be replaced with the sample
standard deviations sx and sy.

Summary

Let X be the number of successes in nx independent Bernoulli trials with suc-
cess probability py. and let ¥ be the number of successes in ny independent
Bernoulli trials with success probability py. so that X ~ Bin(ny. px) and
Y ~ Bin(ny, py). Define iy =nxy +2. iy =ny + 2, py = (X 4+ 1)/fix, and
Py = (Y + 1)/iiy.

Then a level 100(1 — )% confidence interval for the difference py — py is

P 1
§x7ﬁyizﬂﬁ\/}—"x( 3 Px) +PY( : Pr) (5.18)
fix ity

If the lower limit of the confidence interval is less than —1, replace it with —1.
If the upper limit of the confidence interval is greater than 1, replace it with 1.

Summary

The Traditional Method for Computing Confidence Intervals for the
Difference Between Proportions (widely used but not recommended)

Let py be the proportion of successes in a large number ny of independent
Bernoulli trials with success probability px, and let py be the proportion of
successes in a large number ny of independent Bernoulli trials with success
probability py. Then the traditional level 100(1 — @)% confidence interval for
Px —pPris

15 T
'p‘xfﬁyizaa\/p}(( Px) +Pr( Py) (5.19)
Ny ny

This method cannot be used unless both samples contain at least 10 successes
and 10 failures.

Summary

Let X1, ..., Xs, be a random sample of size nx from a normal population with
mean piy, and let ¥y, ..., ¥, be a random sample of size ny from a normal
population with mean py. Assume the two samples are independent.

If the populations do not necessarily have the same variance, a level
100(1 — )% confidence interval for jty — jey is

2
X Tty X+L (521

The number of degrees of freedom, v, is given by

2 242
s K
X ¥
_+_
ny ny

v = W rounded down to the nearest integer.
Sy/fx Sy/Ry

ny —1 ny — 1

Summary

Let X1, ..., Xu, be a random sample of size nx from a normal population with
mean fty, and let ¥y, ..., Y,, be a random sample of size ny from a normal
population with mean fty. Assume the two samples are independent.

If the populations are known to have nearly the same variance, a level
100(1 — @)% confidence interval for jty — py is

_ 1 1
X =T Elin -2 59| 7=+ o (5.22)

The quantity s, is the pooled standard deviation, given by

\/(nx — 12+ (ny — st
Sp:

ny +ny —2

(5.23)

Summary

Let Dy, ..., D, be a small random sample (n < 30) of differences of pairs. If
the population of differences is approximately normal, then a level 100(1 — a)%
confidence interval for the mean difference 1 is given by

D+t 1 an—m (5.24)

where 5 is the sample standard deviation of Dy, ..., D,. Note that this interval
is the same as that given by expression (5.9).

If the sample size is large, a level 100(1 — )% confidence interval for the
mean difference ptp is given by

D+zp05 (5.25)

In practice o is approximated with 5, //n. Note that this interval is the same
as that given by expression (5.1).




Summary

Let Xy, ..., X, be arandom sample from a normal population with variance ol
Yo (X —X)?

The sample variance is s = 1
n—

. The quantity

(n—Ds* 370G -X)P

o? o?

has a chi-square distribution with n — 1 degrees of freedom, denoted Xr?—l'

Let Xy, ..., X, be arandom sample from a normal population with variance ol
Let 52 be the sample variance. A level 100(1 — )% confidence interval for olis

n—1s>  (n—1)s>
Xr%—l,afZ ' Xr?;l,lfafz

A level 100(1 — «)% confidence interval for the standard deviation o is
\/(nfl)sz \/(nfljsz
anf1__a;2 ' Xr;_‘—l.l—a,fz

LetX,,..., X, beasample froma normal population. Let ¥ be another item to be
sampled from this population, whose value has not been observed. A 100(1—o )%
prediction interval for ¥ is

_ 1
X+ T 1,a/28 1+ — (5.26)
i

The probability is 1 — « that the value of ¥ will be contained in this interval.

Let Xy, ..., X, be a sample from a normal population. Let ¥ be another item
to be sampled from this population, whose value has not been observed. A
100(1 — )% upper prediction bound for ¥ is

1

X+ ly 154/ 1+ — (5.27)
n

and a level 100(1 — «)% lower prediction bound for ¥ is

— 1
X —fy1asy/1+— (5.28)
n

Let Xi,..., X, be a sample from a normal population. A tolerance interval
containing at least 100(1 — )% of the population with confidence 100(1 — &) %
is

Xt Ky (5.29)

Of all the tolerance intervals that are computed by this method, 100(1 — «)%
will actually contain at least 100(1 — y)% of the population.

Chapter 6

Steps in Performing a Hypothesis Test

1. Define Hy and H,.
Assume Hj to be true.

3. Compute a test statistic. A test statistic is a statistic that is used to assess
the strength of the evidence against H.

4. Compute the P-value of the test statistic. The P-value is the probability.
assuming Hj to be true, that the test statistic would have a value whose
disagreement with Hy is as great as or greater than that actually
observed. The P-value is also called the observed significance level.

5. State a conclusion about the strength of the evidence against Ho.

Summary

Let Xy...., X, be alarge (e.g., n > 30) sample from a population with mean z¢
and standard deviation .
To test a null hypothesis of the form Hy: pt < ptg. Hp:pt = pp, or Hy: L = pig:

X —
B Compute the z-score: 7 = 'uﬂ.

o/Jn
If & is unknown it may be approximated with s.

B Compute the P-value. The P-value is an area under the normal curve,
which depends on the alternate hypothesis as follows:

Alternate Hypothesis P-value
Hi:p > o Area to the right of z
Hi:p<pg Area to the left of z
Hy:p # g Sum of the areas in the tails cut off by z and —z

Summary

B The smaller the P-value, the more certain we can be that Hp is false.
W The larger the P-value, the more plausible H, becomes, but we can never
be certain that Hy is true.

B A rule of thumb suggests to reject Ho whenever P < 0.05. While this rule
is convenient, it has no scientific basis.

Summary

Let @ be any value between 0 and 1. Then, if P < «,

B The result of the test is said to be statistically significant at the 100a % level.
B The null hypothesis is rejected at the 100« % level.

B When reporting the result of a hypothesis test, report the P-value, rather
than just comparing it to 5% or 1%.

Summary

Let X be the number of successes in n independent Bernoulli trials, each with
success probability p: in other words, let X ~ Bin(n, p).

Totesta null hypothesis of the form Hy: p < po, Ho: p = po.or Hp: p = po.
assuming that both npy and n(1 — py) are greater than 10:

P—po
ol — poy/n’

B Compute the P-value. The P-value is an area under the normal curve,
which depends on the alternate hypothesis as follows:

B Compute the z-score: 7 =

Alternate Hypothesis P-value
Hi:p=>pgy Area to the right of z
Hi:p<p Area to the left of z
Hi:p#py Sum of the areas in the tails cut off by z and —z

Summary

Let Xy, ..., X, beasample from a normal population with mean y and standard
deviation o, where o is unknown.

To test a null hypothesis of the form Hy: i < pg, Hp: it > pg.
or Hy: 1w = iy:

X — o
s/ym
B Compute the P-value. The P-value is an area under the Student’s t curve
with n — 1 degrees of freedom, which depends on the alternate hypothesis

B Compute the test statistic f =

as follows:
Alternate Hypothesis P-value
Hy:p= gy Area to the right of ¢
Hy:p < o Area to the left of 1
Hy: e # g Sum of the areas in the tails cut off by ¢ and —r
B If o is known, the test statistic is z = - #0, and a z test should be
a

performed.




LetXy,...,X,,and ¥,,..., Y, belarge(e.g..ny > 30and ny > 30) samples
from populations with means 1y and py and standard deviations ox and oy,
respectively. Assume the samples are drawn independently of each other.
To test anull hypothesis of the form Hy: ptx —py < Ag, Hy: plx — by = Ag,
or Ho: oy — py = Ag:
X-T-A
Voi/ny +oi/ny

they may be approximated with sy and sy, respectively.

B Compute the z-score: z = . If oy and oy are unknown

B Compute the P-value. The P-value is an area under the normal curve,
which depends on the alternate hypothesis as follows:

Alternate Hypothesis P-value
Hy:py — iy = Ag Area to the right of z
Hy:uyxy —puy < Ag Area to the left of 7
Hy:py —py # Ap Sum of the areas in the tails cut off by z and —z

Let X ~ Bin(ny, px) and let ¥ ~ Bin(ny, py). Assume that there are at least
10 successes and 10 failures in each sample, and that X and Y are independent.

To test a null hypothesis of the form Hy: px — py <0, Hy:py — py =0,
or Hy:px — py =0:

X Y X+7Y
B Compute py = —, py = —, and p = ;
nx fy nyx +ny

Px — Py

B Compute the z-score: 7 =

VA=) A nx +1/ny)
B Compute the P-value. The P-value is an area under the normal curve,
which depends on the alternate hypothesis as follows:

Alternate Hypothesis P-value
Hi:px —py >0 Area to the right of z
Hy:px —py <0 Areato the leftof z
Hi:px—py #0 Sum of the areas in the tails cut off by z and —z

Let X,,...,X,, and ¥, ..., Y, be samples from normal populations with
means gy and gy and standard deviations ox and oy, respectively. Assume
the samples are drawn independently of each other.

If oy and oy are not known to be equal, then, to test a null hypothesis of the
form Ho:pix — by < Aa. Hotpex — iy > Ao, or Hy: iy — ity = Ag:

1 [(s%/nx) + (55{"”12 . rounded
[(5%/nx)?/(nx — DI+ 1(s3 /ny)?/(ny = D]

down to the nearest integer.

B Compute v =

X-T)— A
Vsy/nx +si/ny
B Compute the P-value. The P-value is an area under the Student’s # curve
with v degrees of freedom, which depends on the alternate hypothesis as
follows:

B Compute the test statistic =

Alternate Hypothesis P-value
Hytpiy —py > Ay Area to the right of t
Hyipiy — py < Ay Area to the left of 1
Hy:py — py # Ag  Sum of the areas in the tails cut off by f and —t

Let X,y,...,X,, and ¥,,..., ¥, be samples from normal populations with
means iy and gy and standard deviations oy and oy, respectively. Assume
the samples are drawn independently of each other.

If oy and oy are known to be equal, then, to test a null hypothesis of the
form Hy: piy — ity = Ag, Ho:ptx — iy = Ao, or Hy: piy — iy = Ag:

(nx — 1)si + (ny — sy
nxy +ny —2 ’

B Compute s, = \/

. X -7 - Ao
B Compute the test statistic / = —————————
Spa/ [nx + 1/ny

B Compute the P-value. The P-value is an area under the Student’s t curve
with ny 4+ ny — 2 degrees of freedom. which depends on the alternate
hypothesis as follows:

Alternate Hypothesis P-value
Hy:py —py = Ay Area to the right of ¢
Hyipy —py < Ay Area to the left of
Hy:px — iy # Ag Sum of the areas in the tails cut off by f and —t

Let (X, Y¥y)....,(X,,Y,) be a sample of ordered pairs whose differences
Dy, ..., D, are a sample from a normal population with mean fp,. Let sp be the
sample standard deviation of Dy, ..., D,.
To test a null hypothesis of the form Hy:pup < po, Ho:lip = Mo, or
Hy:pp = po:
D —
sp/um’
B Compute the P-value. The P-value is an area under the Student’s ¢ curve
with n — 1 degrees of freedom, which depends on the alternate hypothesis

B Compute the test statistic 1 =

as follows:
Alternate Hypothesis P-value
Hy:up > gy Area to the right of ¢
Hy:up < o Area to the left of 1
Hy:pp # 1o Sum of the areas in the tails cut off by 1 and —r
W If the sample is large, the D; need not be normally distributed, the test
D—
statistic is z = l . and a z test should be performed.
sp/m

E;

To conduct a fixed-level test:

k _E)2
PR W i R (Y0
i=l

B Choose a number «, where 0 < & < 1. This is called the significance
level, or the level, of the test.

B Compute the P-value in the usual way.
B If P <, reject Hy. If P > «, do not reject Hy.

If o is the significance level that has been chosen for the test, then the probability
of a type I error is never greater than .

‘When conducting a fixed-level test at significance level @, there are two types of
errors that can be made. These are

B Type I error: Reject Hy when it is true.
M Type Il error: Fail to reject Hy when it is false.

The probability of a type I error is never greater than a.

1

eﬂx dx — _eax
a
eax
xe” dx = —(ax — 1)
a'Z
ax
xZe™ dx — —3(@12)4:2 —2ax +2) |
a .

X -

e sin bx dx = m(a sin bx — bcos bx)

e cos bxdx = m(a cos bx + bsin bx)

1 1 X
—  dx=-tan' -
x2 4+ a2 a a

X 1 5 2
;2+—a—2-dx=iln(x +a)
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